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Abstract

This paper considers aggregation of experts opinions expressed through
not necessarily independent but even conflicting probability distributions
or multiple priors. The paper addresses elicitation of common opinion
and derives its conditional probabilities on future events.

1 Introduction

Combining experts opinions represented by probability distributions is a multi-
disciplinary process, that involves mathematical and behavioral approaches, for
eliciting a consensus distribution or common probability distribution. Under
uncertainty or ambiguity the decision-maker (DM henceforth) has to take an
action on the basis of aggregated probabilities by considering not only opinions
of who he regards as experts but also competence or quality of their judgements.
Savage (1971) set that "risks characterized by tiny probabilities may be diver-
gent, and, what is more relevant, you might discover which expert is optimistic
or pessimistic in some respect and therefore temper his judgements. Should he
suspect you of this, however, you and he may be on the escalator of perdition"!.

In the Savage’s perspective, mathematical Bayesian aggregation models man-
age individual probability distributions to obtain a single combined one oper-
ating with different degree of complexity to represent experts’ different com-
petence, reliability and independence, such that: equal weight, best expert,
copula etc. (Stone 1961; Genest and Zidek 1986; Cooke 1991; Ramanathang
and Genesh 1994; Plous 1993). Over the last decade there has been large atten-
tion on determining weights of experts in the group decision making process, in
the Bayesian axiomatic approach to consensus distribution: i.e. Yue 2012; Xu
and Kai 2012; Abootalevi et al 2018.

Under uncertainty, the Bayesian axiomatic approach to consensus distribu-
tion does not admit a consistent representation of experts’ incomplete, fuzzy,

In 1954, in the lecture at the Istituto Universitario di Studi Europei in Turin, de Finetti
considers a decision making process involving experts. Given the dilemma of choice between
"mean of decisions or mean of opinions", de Finetti sets the latter, even if it conveys the choice
of a particular type of mean when experts have different competence or expertise.



not reliable and conflicting information. Some methods, different from Bayesian
pool operators, were proposed to readjust imprecise or ambiguous opinions of
experts based on closed and convex set of probabilities or capacities: Cres et al
2011; Gajdos and Vergnaud 2013; Basili and Pratelli 2015.

This paper presents an approach to elicit consensus distribution among not
necessarily independent and fully competent experts based on multiple priors.
The paper focuses on the Steiner point and by considering its properties, with a
class of probability measures, directly derives conditional judgements, that are
particular relevant when the DM has to evaluate consequences related to rare
events.

The paper proceeds as follows. Section 2 gives main motivation and the
related literature. Section 3 introduces notation and definition. The Steiner
point is defined and the consensus distribution is elicited. An example makes
clear the Steiner point evaluation. Section 4 solves the updating problem of the
consensus opinion when learning is considered. Section 5 concludes.

2 Main motivation

A fundamental assumption of Bayesianism is that a rational agent has complete
certainty about the probabilities of states of the World that is represented by a
unique, additive and fully reliable probability distribution. In strict Bayesian-
ism, subjective probabilities are derived by bets about states (Ramsey 1926, de
Finetti 1936, Savage 1954) and the Dutch Book theorem, that does not allow
arbitrage, implies that agent is willing to take either sides of a bet: if the agent
accepts a bet on state i at odds of ¢ : d, she accepts a bet on —i (— is the
complement operator) at odds d : ¢. Nevertheless, agents facing uncertainty
could contradict coherence criterion and rejects one side of the bet. In fact, the
Dutch Book theorem assumes a Boolean algebra of events, but DM can be un-
able to have a fully reliable probability distribution on events making Bayesian
conditional inference incoherent.

Given possible future rare events, that are often disregarded or considered
‘outlier’, a policy-maker could be interested in assessing their likelihood; however
experts could be not able to elicit a reliable probability distribution but, at most,
an interval of probabilities or even an ordinal judgment such as: low probable,
high probable etc.

Nevertheless, there exist events that are very rare but could induce catastrophic
risk for human beings. Pandemic flu, climate change induced by global warming
and asteroid crash into Earth are examples of potentially catastrophic events and
may happen that the DM have to decide how to manage them. In Bayesian the-
ory, this problem is solved by conditional probability and the DM could choose
among alternatives by applying maximum expected utility principle that only
requires additive decomposable utility function.

Sometime data or evidence are inadequate or unreliable to elicit probabili-
ties interpreted as betting rates in risk neutral framework. Experts could be not
able to elicit a reliable probabiliy that represent the tipping points (abrupt state



changes or large-scale singular events) in climate or ecosystems. As an example,
they could be not able to assess a reliable response of the climate system to pos-
sible trajectories of radiative forcing from aerosols such as: Atlantic Meridional
Overturning Circulation — AMOC, the Greenland Ice Sheet — GIS, the West
Antarctic Ice Sheet - WAIS, the Amazon Rain Forest and the El Nino/Southern
Oscillation — ENSO (Kriegler et al. 2009).

To overcome this unsatisfactory situation, the DM could use expert elici-
tation protocols, such as Delphi, Q-Methodology, Nominal Group technique,
Kaplan approach etc, but all of them suffer from many problems: polarization,
strategic manipulation, overconfidence, self-censorship, pressure to conform, an-
choring, adjustment, etc. (US EPA 2011). Moreover, experts’ ambiguity could
be very large or express ignorance, even if assessment is represented by interval
of probabilities (Zickfeld et al. 2007) or qualitative scale (IPCC 5th Assessment
Report 2014)2.

Nonetheless, in the case of radiative forcing and climate response resulting
from atmospheric aerosol concentration that scatter or absorb solar radiation
and modify cloud properties by altering the radiation budget, the DM could
be interested to evaluate climate response to alternative future trajectories of
radiative forcing?.

3 Notation and definition

Let S be the finite set of states of the world, where S = {s1, s2, ..., S, }, & be the
algebra of events where ¥ = 2% and P be a probability distributions on (S, ).
A measure v > 0 is a positive capacity on (S,X) ifv: A € ¥ — v(4) € R,
where v(&) =0, v(S) =1 and A, B € ¥ such that A C B = v(A) <v(B). A
capacity v is convex if (AU B) +v(AN B) > v(A) 4+ v(B). The dual capacity*
T of a capacity v is defined by ©(A4) = 1 — v(AY) VA € ¥. Uncertainty is
modeled through the core of a convex capacity v, i.e., through the set C'(v) of

2For decisions under risk and uncertainty, the core team of scientists set a guide note in-
tended to assist Lead Authors of the 5th Assessment Report of IPCC on Climate Change. The
guidance note on consistent treatment of uncertainties “rely on two metrics for communicating
the degree of uncertainty in key findings: confidence in the validity of finding based on the
type, amount, quality and consistency of evidence (e.g. mechanistic understanding, theory,
data, models, expert judgment) and the degree of agreement” (IPCC working-group for the
5th Assessment Report AR5). The team defines ordinal scales to represent the validity of
findings (limited, medium, robust), the level of confidence, that has not be interpreted prob-
abilistically, of the author teams’ judgements about the validity of findings (very low, low,
medium, high, very high) and likelihood or a calibrated language for describing quantified
uncertainty (exceptionally unlikely, very unlikely, unlikely, about as likely as not, likely, very
likely, virtually certain).

3Unfortunately, the behavior of climate system is very uncertain and ambiguous probabilis-
tic estimations of equilibrium climate sensitivity result from models of different complexity
and statistical methods. Expert judgments about global mean temperature response to differ-
ent forcing trajectories show a considerable variation in the increase of average temperature
in three corridors from1,5C° to 6C° (Kriegler et al. 2009), and "the ordering of mean ranks
is not entirely robust with respect to the procedure used" (Zickfeld et al. 2010).

41If the capacity v is convex its dual capacity T is concave.



probability distributions P on (S, X) above v, or P(A) > v(A) VA € X.

For X : ¥ — R, an act, the cumulative distribution function F'x of X with
respect to a probability P is defined by x € R — Fx(z) = P(X < z). For every
X and v, the Choquet integral of X with respect to v denoted fde is defined

by [ Xdv=[° _(v(X >1t) = )dt+ [,;"v(X > t)dt.

3.1 The Steiner Point

The DM asks to a finite set of experts j = 1,...,m to value the possible prob-
ability distributions P governing an uncertain phenomenon that may occur in
the future. It is assumed that there is a unique unknown probability distribu-
tion Py governing the phenomenon. Each expert ¢, will be asked to give lower
and upper bounds for the probability pj = Py ({i}), or probability envelope,
so that the resuling probability interval is a convex set with a finite set of ex-
treme points (Kyburg 1987). The set of possible probabilities P; considered by

expert j will be P; = {P = (D1, ooy Diy ooy D) 5 af <p; < bg, 1=1, ,n} and

0< a'g < bZ < 1. It is straightforward that P; # &, i.e. proper, if and only if
(de Campos et al. 1994):

dal <1<y [1].
If the set of all possible probability distributions of expert j is not empty
(P; # @), P; can be regarded as the the core C(v;) of a convex capacity v,

such that v;(A) = Maz (Zaf, 1- be) (Chateauneuf and Cornet 2012).

icA igA

Even if experts do not know Py they should contemplate a set P;, such that

Py € P;. By competence and reliability of the experts it is reasonable to expect

that NP; # &, that is the experts should not have fully conflicting opinions.
J

From [1], it is immediate that NP; # @ is equivalent to Zai <1< Zb,' and
J - -

a; < b; Vi, where: a; = Maxag, b, = minb{ (Basili and Chateauneuf 2016).
J J

On the contrary, if the experts have imprecise and fully conflicting opinions,
i.e. NP; = @, the DM should require them to revise their opinion by reconsid-
J

ering their P;, in order to satisfy the consistency requirement NP; # @. If the
J

minimal consistency condition holds, the consensus opinions P NP; can be de-
J

fined through the convex capacity v such that v(4) = Max (Zai, 1-— Zbl>
icA igA
and the convex capacity v can now be considered as the aggregation of the
multiple prior opinions.
In such a framework the Steiner point has a particular interest. The Steiner
point or curvature centroid of a convex set is the centroid of a system of masses



attached to its vertices’. The Steiner point is additive, uniformly continuous

and satisfies invariance property respect to isometries (Shephard 1966; Berg
1971). The Steiner point IT5* € C(v) can be considered as the representative
probability of the consensus experts’ opinions. As a matter of fact the Steiner
point is defined as the center of P € C(v), so as a meaningful probability
summarizing the consensus experts’ opinions.

It is well known that the core of a convex capacity can be represented as
the core of a convex cooperative game with transferable utility (TU). The core
of a convex TU is non empty and the Shapley value of such a balanced, i.e.
with non-empty core, game belongs to it (Shapley 1971). Moreover the extreme
points of the core of a convex game are its marginal worth vectors; so the core
coincides with the Weber set or the closed convex set of marginal vectors®. In
such a situation, the Shapley value coincides with the Steiner point of its core’
(Gajdos et al 2008, Pechersky 2015), moreover the Shapley value of an arbitrary
convex TU game can be represented as a difference of the Steiner points of the
cores of two convex game (Rosenmuller 1981, Pechersky 2012). Computation

of the Shapley value (Owen 1995, 265) is easier than evaluation of the Steiner
point and the Shapley value 115" (i e. I1°" = I1°*) can be determined as follows:

vie (L) 0Ft = 37 (AEEEEAR 0(4) —u(A\ {i})] 2]

i€ACS

Example 1 Computation of the Shapley value for the following ’probability-
interval’ capacity v

S = S1 S2  S3
by = 6 5 T
I
% = 14 14 14

1 14
therefore v is given by

5The Steiner point of a core is the weighted average of its vertices, in which the weight for
each vertex is proportional to its outer angle.

Formally, given a convex compat set A € R™, the Steiner point St(A) = c%n / up(u, A)dw
Sn—1
where u is a variable unit vector, p(u, A) is the value of support function of A in direction
u, dw is an element of surface area of the unit sphere S™~1, and o, is the content of the
n — dimensional unit ball (Pechersky 2015).

6Webber (1978) proved that for any game the core is included into the convex hull of its
marginal worth vectors and for a convex game they coincide (Shapley 1971).

7" An external angle of a polytope A at a vertex z is defined as the ratio of the (n-1)-content
of the intersection of the normal cone to A at z with the unit (n-1)-sphere S™ !centered on
the origin to the (n-1)-content of S™~!”(Pechersky 2015, 490). Here, the vertices of the
core are precisely the marginal worth vectors and the external angle at a vertex of the core is
proportional to the number of marginal worth vectors defining this vertex. Then "the Shapley
value of a convex game is a weighted sum of the extreme points of the core with the weights
equal to %" (Pechersky 2015, 492); where N is the player set, k € N, k = {1,2,...,n} and
k(z) is the number of marginal vectors defining the extreme point x.



A {81} {gz} {83} {81782} {81873} {82873} 51

v(d) & 14 7 11 1 it
then by [2]:

H,lg _ % {2-1724 + 1.(5—i,2-7—4) 2. (14 7)} _ g
Hg:%{2.%+1(52+73) 145}:%

I = é {Q-ﬁ i 1,(7—2+7—4) 14 7)} _ %2

hence ITY = (22, 31 22)

4 Conditional consensus opinion

Assume that the process that makes information available to the DM is repre-
sented by the occurrence of a fixed non-null event I'. What is the conditional
consensus opinion elicited when I" occurs? The standard solution is of course the
Bayesian updating, but unfortunately, it is not possible to update the Steiner
point by the Bayes rule, because of dynamic incosistency®.

Literature about multiple priors updating sets some rules, the simplest of
which is to apply the Bayes rule to each probability distributions in the core
(prior-by-prior updating) and reassess the Steiner point by applying [2]. Bayesian
updating of the core ensures dynamic consistency, but the re-evaluation of the
Steiner point can be laborious, and some alternative method are possible even
if assumptions have to be introduced: rectangularity’, menu dependence etc.

However Jaffray (1992) and Chateauneuf et al. (2011) define an updating
process which satisfies some desirable properties. Since a convex capacity is
the lower envelope of its core, then if v represents (C(v))! for any non-null
event ', the updating is regular. Jaffray (1992) shows that if S is a finite set, a
capacity v satisfies regular updating if and only if:

. U&i GB)ZQ\)({E ’US;) 1 | = WAnB)ru(aUB) = v(4) +o(B)

This condition is not always satisfied, but there is a set of convex, regular and
strictly positive (i.e. v > 0) capacities, indeed a parametric class of capacities
introduced by Huber (1981) called (¢, §) — contamination , that verifies required
conditions. Among (€,d) — contamination capacities there is a special class
indeed the € — contamination capacities (6§ = 0)!° that not only satisfies the full

8 Dynamic consistency requires that updated preferences are consistent with ex-ante pref-
erence, i.e. ex-post preference is the same as the DM’s ex-ante preference.

9Since dynamic consistency implies the decomposition of a probability distribution in term
of its conditionals and marginals, "a set of prior is rectangular if its induced sets of conditionals
and marginals admit a corresponding decomposition" (Epstein and Schneider 2003).

10The e—contamination structure in the empirical Bayes analysis of individual beliefs or ro-

bust Bayesian analysis was introduced by Huber (1964, 1965). The Robust Bayesian viewpoint
affirms that one of the main justification for using Bayesian analysis is that prior distributions
can never be quantified or elicited exactly (i.e., without error), especially in a finite amount of
time. A probability distribution can be contaminated by € € [0, 1] another one. The parameter
e reflects the amount of error that is considered possible.



bayesian updating rule, but also the Dempster-Shafer updating rule, that is the
most famous updating rule for beliefs and possibility measures!'. Crucially an
€ — contamination probability distribution is a convex capacity, i.e. VA C %,
v;i(A) = eP;(A) if A # X. In this perspective, the consensus distribution
elicited by the Steiner point II°* € C(v) is nothing less than a proxy of the
true not know Py and the parameter € € [0,1) can be considered as the error
in experts’ approximation or II*= €Py, and it is possible to apply the full
Bayesian updating rule. Moreover (Chateauneuf et al. 2011), if S is an infinite
countable set and v is strictly positive, weakly lower continuous and convex,
then v satisfies regular updating property and v is an € — contamination with
e€[0,1).

Then (I54)F = TIg* [4].

By [4] it is possible to update the Steiner point only, instead of all prob-
abilities belonging to the core, and eliciting the consensus opinion of experts
conditional to any event in 3.

Regular updating gives the possibility to evaluate the conditional consensus
opinion, defined as the Steiner point, directly and easily. This is a usefull possi-
bility when DM has to consider uncertain climate change consequences, that in
the case of average increase temeratures implies evaluation of risk and poten-
tial for adaptation with respect to global events (i.e. crops yields and increases
in yield variability, increase morbidity and mortality, reduced access to water,
etc.) induced by climate-related drivers of impacts such as: warming trend,
extreme temperature, drying trend, extreme precipitation, damaging cyclone,
flooding, storm surge, ocean acidification, carbon dioxide fertilization, reduction
in terrestrial carbon sink, Boreal tipping point, Amazon tipping point, species
extinction, marine biodiversity loss etc.

5 Concluding remarks

The paper studies the problem of aggregating probabilities for a given set of
possible, sometimes rare, future events by uncertain, not necessarily independent
but even conflicting experts. The paper offers a simple method to calculate
a single probability distribution taking into account different competence and
credibility of experts. Uncertain experts’ options are represented by closed and
convex set of probability distributions (multiple priors) or capacities, none of
which is considered fully reliable. The paper introduces the Steiner point as a
representation of experts’ consensus opinion and shows how the Steiner point
can be updated by learning. If the experts’ opinions are € — contamination

v(AUB®)—v(B°)

T=o(BT) where

1 Given A, B € ¥, Dempster-Shafer updating rule is v(A | B) =
v(BY) =1 —v(B).

If S is a finite set and v is a strictly convex capacity on X, "the following statements are
equivalent:

(i) v satisfies the Dempster and Shafer Consistency Property for full bayesian updating rule;

(ii) v is an € — contamination with € € [0,1)" (Chateauneuf et al 2011, 120).



capacities the conditional Steiner point is elicited by the simple full bayesian
updating rule.
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