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Abstract

This paper develops a set of test statistics based on bilinear forms in the context of the extremum estimation framework.
We show that the proposed statistic converges to a conventional chi-square limit. A Monte Carlo experiment suggests
that the test statistic works well in finite samples.
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1. Introduction

The purpose of this paper is to introduce a novel test
statistic for extremum estimation (EE). In this very gen-
eral setting (see for instance Gourieroux and Monfort, 1995;
Hayashi, 2000), conventional test statistics are defined ei-
ther in terms of differences (pseudo likelihood ratio or dis-
tance statistic) or in terms of quadratic forms (Wald, La-
grange multiplier). The test proposed in this paper is de-
fined in terms of a bilinear form (BF ). This approach
is not entirely new as a bilinear form test for maximum
likelihood was introduced by Terrell (2002) (see also the
monograph by Lemonte, 2016). Our test statistic has a
conventional chi-square limit and, similarly to the Wald
test, it is generally not invariant to the definition of the
null hypothesis. It is, though, easy to see that in the con-
text of linear models the BF test is equal to the distance
statistic, which is, on the other hand, invariant. Further-
more, when nonlinear models are involved our Monte Carlo
simulations suggest that the discrepancy induced by equiv-
alent definitions of the null hypothesis is relatively small
when compared, e.g., to the Wald test. To the best of
our knowledge this is the first paper that deals with this
problem in the context of EE.

The remainder of the paper unfolds as follows. Section
2 contains the description of the test statistics for a generic,
potentially nonlinear, null hypothesis and their asymptotic
properties; the asymptotic results and the corresponding
proofs are presented in a concise fashion and are mostly
based on the results in Gourieroux and Monfort (1995). In
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Section 3 we study, via Monte Carlo experiments, the finite
sample properties of the test in comparison with other
more conventional EE test statistics. Section 4 offers some
conclusions while the appendices contain the proofs of the
asymptotic results.

2. A bilinear form test statistic

Let us consider a scalar objective function Qn(β) that
depends on a set of data wi, i = 1, . . . , n with wi ∈ Rk
and β ∈ B ⊂ Rp where B is compact. The EE for our
objective function can be defined as

β̂n = argmax
β∈B

Qn(β). (1)

Let us now suppose that we want to test the following null
hypothesis

H0 : g(β0) = 0 (2)

given that g : Rp → Rq is a continuously differentiable
function and G(β) = ∂g(β)/∂β> is a q × p matrix with
rk(G(β)) = q. The resulting constrained estimator is de-
fined as the solution of the Lagrangian problem

Ln(β,λ) = Qn(β)− g>(β)λ, (3)

where λ denotes a vector of Lagrange multipliers. Hence,

β̃n = argmax
β∈{B:g(β)=0}

Ln(β,λ). (4)

The null hypothesis in Equation (2) can be tested, for ex-
ample, by means of the simple Wald (W ) test, that only re-
quires the unconstrained estimator or either the Lagrange
multiplier (LM) test or the distance metric (D) statistic
that both require the constrained estimator in Equation
(4). The BF tests that we propose are generalizations of
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Terrell’s gradient statistic (Terrell, 2002) to the EE con-
text.1 Let us first define An(β0) ..= ∂2Qn(β0)/∂β∂β>

and assume that An(β0)
a.s.→ A uniformly. Let us also

assume that

√
n
∂Qn(β0)

∂β

D→ Np(0,B).

Furthermore, let G ..= G(β0), S = G{−A}−1G> and
Ω = GA−1BA−1G>. Then,

BF1
..= nλ̃>nSΩ−1g(β̂n) (5)

where λ̃n is the solution for λ in the Lagrangian problem
defined by Equation 3. The BF statistic also has the fol-
lowing alternative formulations. Let G+ = G>{GG>}−1
denote the Moore-Penrose inverse of G (see, for instance,
Magnus and Neudecker, 2007, p. 38). Then,

BF2
..= n

∂Qn(β̃n)

∂β>
G+SΩ−1g(β̂n) (6)

BF3
..= n

∂Qn(β̃n)

∂β>
G+SΩ−1G(β̂n − β̃n) (7)

Let us define PG
..= G+G and assume that B = −A,

which leads to S = Ω. We then obtain the following spec-
ifications:

BF4
..= nλ̃>n g(β̂n) (8)

BF5
..= n

∂Qn(β̃n)

∂β>
G+g(β̂n) (9)

BF6
..= n

∂Qn(β̃n)

∂β>
PG(β̂n − β̃n) (10)

BF7
..= n

∂Qn(β̃n)

∂β>
(β̂n − β̃n). (11)

The assumption that B = −A is not very restrictive as
it may include as special cases maximum likelihood and
GMM statistics (see Hayashi, 2000, Chapter 7). The fol-
lowing theorem shows that the BF tests are asymptoti-
cally equivalent and have a conventional chi-square limit.

Proposition 1. Under the assumptions of Property 24.16
and Property 24.10 in Gourieroux and Monfort (1995),
with g : Rp → Rq being a continuously differentiable func-
tion and G(β) = ∂g(β)/∂β> a q×p matrix with rk(G(β)) =
q,

BFk
D→ χ2

q, k = 1, 2, 3.

If, in addition, B = −A holds, then

BFk
D→ χ2

q, k = 4, 5, 6, 7.

1Sometimes the term gradient statistic is used to indicate the
LM test for GMM (see for example Chapter 22 in Ruud, 2000). To
avoid confusion we prefer the expression bilinear form test and the
corresponding abbreviation BF .

Proof. See Appendix A.

Remark 1. When Qn(β) = `n(β) is the log-likelihood
function we obtain that the BF statistic is given by

BF = U>n (β̃n)G+g(β̂n), (12)

where Un(β) = ∂`n(β)/∂β denotes the score function.
We must highlight that (12) is an extension of the test
proposed by Terrell (2002) to tackle nonlinear hypotheses.

Remark 2. It is interesting to see that in the case of the
linear model, D and BF are equal. Let us consider, the
example in Hansen (2006). The BF statistic is

BF = (y −Xβ̃n)>XB−1X>X(β̂n − β̃n).

Since β̂n = (X>X)−1X>y and X>(y −Xβ̂n) = 0, it
follows immediately that BF = D.

Proposition 2. The BF test statistic in Equation (5)
and the Lagrange multiplier test statistic

LM ..= nλ̃>nSΩ−1Sλ̃n,

are asymptotically equivalent under H0 : g(β0) = 0. Their
common asymptotic distribution is χ2

q.

Proof. See Appendix B.

3. Monte Carlo simulations

To study the finite sample properties of the BF statis-
tic we consider two equivalent nonlinear null hypotheses,
as in Gregory and Veall (1985) (see also Hansen, 2006; La-
fontaine and White, 1986). The BF test, which is not in-
variant to the specification of the null, is compared against
the W , LM and D statistics. While the first two tests are
known to be not invariant, the last test is invariant and
works well in finite samples (see also Hansen, 2006). The
performance of the tests is measured in terms of how close
the empirical size is to the 5% nominal size and in terms
of the discrepancy between the empirical sizes produced
by competing equivalent hypotheses.

3.1. Setup

We consider the model specification

y = 1nβ1 + x2β2 + exp(x3β3) + ε,

where 1n is a n-vector of ones, xj ∼ Nn(0, 0.16 I), j = 2, 3
and ε ∼ Nn(0, 0.16 I). Moreover, we consider the following
combinations of parameters

(β1, β2, β3) ∈ {(1, 10, 0.1), (1, 5, 0.2), (1, 2, 0.5), (1, 1, 1)},

and sample sizes n ∈ {20, 50, 100, 500}. We test two equiv-
alent null hypotheses

HA
0 : β2 −

1

β3
= 0, (13)

and
HB

0 : β2β3 − 1 = 0. (14)

The number of Monte Carlo replications is set to 5000.
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Table 1: Empirical size for a 5% test. The superscripts A and B refer to the fact that W , LM and BF are computed using the null hypotheses
in Equations (13) and (14), respectively.

(β2, β3) n WA WB BFA BFB LMA LMB D
(10,0.1) 20 0.420 0.176 0.067 0.064 0.087 0.084 0.087

50 0.282 0.106 0.065 0.059 0.074 0.068 0.074
100 0.197 0.077 0.059 0.059 0.061 0.061 0.061
500 0.104 0.052 0.048 0.048 0.049 0.049 0.049

(5,0.2) 20 0.277 0.178 0.068 0.065 0.086 0.083 0.086
50 0.171 0.108 0.058 0.057 0.068 0.067 0.068

100 0.127 0.078 0.058 0.058 0.062 0.061 0.062
500 0.070 0.052 0.047 0.047 0.048 0.048 0.048

(2,0.5) 20 0.145 0.175 0.066 0.067 0.082 0.082 0.082
50 0.096 0.113 0.062 0.057 0.075 0.070 0.075

100 0.078 0.082 0.056 0.056 0.062 0.062 0.062
500 0.049 0.055 0.045 0.045 0.050 0.050 0.050

(1,1) 20 0.140 0.170 0.084 0.070 0.101 0.086 0.101
50 0.095 0.108 0.062 0.062 0.070 0.070 0.070

100 0.074 0.080 0.066 0.066 0.067 0.067 0.067
500 0.055 0.055 0.056 0.056 0.061 0.061 0.061

3.2. Comments on the simulations

The results in Table 1 suggest that the BF test works
well in finite samples even when the sample size is as small
as n = 20. In most of the considered cases the BF test
outperforms the distance statistic D as well as the LM
test. Finally, it is worth noticing that, unlike W , the BF
test is not very sensitive to the specification of the null
hypothesis.

4. Concluding remarks

In this paper we introduced a set of bilinear form tests
for EE that may be considered as a generalization of Ter-
rell’s gradient statistics (Terrell, 2002). The asymptotic
distribution of the proposed tests is chi-square with de-
grees of freedom equal to the number of restrictions. A
Monte Carlo experiment shows that the BF test works
well in finite samples and that it generally outperforms its
competitors. Furthermore, while the BF test is not gen-
erally invariant to the specification of the null, its finite
sample performance seems to be only marginally affected
by such a property.

Appendix A. Proof of Proposition 1

Following Property 24.16 in Gourieroux and Monfort
(1995), we know that

√
n(β̂n − β0)

D→ Np(0,A
−1BA−1). (A.1)

Then, by the delta method, we find that underH0 : g(β0) =
0 √

n g(β̂n)
D→ Nq(0,Ω). (A.2)

From Property 24.10 in Gourieroux and Monfort (1995),

we have that β̃n and λ̃n are the solutions of the first order
conditions of the Lagrangian problem in Equation (3):

∂Qn(β̃n)

∂β
−G>(β̃n)λ̃n = 0 (A.3)

g(β̃n) = 0 (A.4)

and β̃n is consistent. A Taylor expansion argument ap-

plied to ∂Qn(β̂n)/∂β and ∂Qn(β̃n)/∂β around β0,An(β0)
a.s.→ A uniformly and simple calculations yield

√
n g(β̂n) = G{−A}−1

√
n
∂Qn(β̃n)

∂β
+ oa.s.(1). (A.5)

From the first order condition (A.3),

√
n
∂Qn(β̃n)

∂β
= G>(β̃n)

√
n λ̃n, (A.6)

we obtain that

√
n λ̃n = [G{−A}−1G>]−1

√
n g(β̂n) + oa.s.(1).

Then, using (A.2), we find

√
n λ̃n

D→ Nq(0,S
−1ΩS−1). (A.7)

Let Ω = RR> where R is a nonsingular q × q matrix.
Then, using standardized versions of (A.2) and (A.7), it
follows that

BF1 = {R−1S
√
n λ̃n}>R−1

√
n g(β̂n)

= nλ̃>nSΩ−1g(β̂n)
D→ χ2

q.
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The proof for BF2 and BF3 follows from the equivalences

√
n g(β̂n) = G

√
n(β̂n − β̃n) + oa.s.(1)

and
√
n λ̃n =

√
n{G+}> ∂Qn(β̃n)

∂β
.

The proof for BF4, BF5 and BF6 follows by additionally
assuming B = −A. Finally, the proof for BF7 uses the
fact that PGΩPG = Ω.

Appendix B. Proof of Proposition 2

From (A.5) and (A.6), we have that

√
n g(β̂n) = G{−A}−1G>

√
n λ̃n + oa.s.(1)

= S
√
n λ̃n + oa.s.(1),

and this implies that,

BF =
√
n λ̃>nSΩ−1

√
n g(β̂n)

=
√
n λ̃>nSΩ−1S

√
n λ̃n + oa.s.(1).

By using the asymptotic distribution given in Equation
(A.7), the proposition is verified.
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