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Abstract

It is shown that the median voter theorem for committee-decisions
holds over a full unimodal preference domain whenever
(i) the underlying median interval space satisfies interval anti-

exchange and
(ii) unimodality is defined with respect to the incidence-geometry

of the relevant outcome space or network.
Thus, in particular, the interval spaces canonically induced by trees

do support the median voter theorem on their own full unimodal pref-
erence domains. Conversely, validity of the median voter theorem
on the full unimodal preference domain of a certain median interval
space on a discrete outcome space requires that the graph canonically
induced by that interval space be precisely a tree.
JEL Classification : D71
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1 Introduction

The so-called ‘median voter theorem’says that if the voters’preferences are
‘unimodal’ then median outcomes are also ‘majority winners’: it refers in
fact to an entire family of results concerning both voting in committees and
elections of candidates in modern representative democracies, and relying on
several distinct specifications of the domain of ‘unimodal’preferences and of
the notion of ‘majority winner’. Accordingly, one may sensibly distinguish
two varieties of median voter results:
(i) ‘Median voter theorem(s)’for committees: if voters’preferences

are ‘unimodal’i.e. have a unique maximum and ‘respect compromises’
then the median of the alternative outcomes actually chosen by single voters
is a Condorcet winner i.e. is preferred to any other outcome by some majority
of voters.
(ii) ‘Median voter theorem(s)’for elections of a candidate in a

representative democracy: if candidates choose their platforms in the
outcome space just in order to win the election and are able to predict the
distribution of voters’ choices, and voters’preferences are ‘unimodal’ i.e.
have a unique maximum and ‘respect compromises’, then the only (strict)
Nash equilibrium of the strategic platform-selection game played by candi-
dates is the profile of platforms where each candidate selects the median
of the alternative outcomes actually chosen by single voters.
The paradigm of (i) is the classic result by Black (1948) (but see also,

Moulin (1980), Wendell, McKelvey (1981), Hansen, Thisse (1981), Moulin
(1983), Bandelt, Barthélemy (1984), Bandelt (1985), Danilov (1994)). The
paradigm of (ii) is Downs (1957) (who explicitly draws on ideas advanced
by Hotelling (1929) in his classic analysis of spatial competition in duopoly;
but see also Wendell, McKelvey (1981), and especially Roemer (2001) for an
extensive, thorough discussion of several variants of ‘median voter theorems’
of that type).
It should be emphasized at the outset that the reason why choosing the

median outcome among voters’choices as a platform is the common, unique
(strict) Nash equilibrium strategy for each candidate is due precisely to the
fact that under the given assumptions that platform/outcome is a Condorcet
winner.
Thus, the formulations of ‘median voter theorems’presented above should

make clear two main points, namely:
1. The ‘representative democracy’- variety relies on the ‘committee’-

2



variety of median voter theorem(s) (plus some supplementary more or less
disputable hypotheses on the number, motivation and/or forecasting ability
of candidates and their possibly supporting parties: see Roemer (2001) on
those issues and other related matters).
2. The ‘committee’- variety of median voter theorems relies heavily on an

underlying geometric structure of the outcome space that makes it possible
to sensibly define a median (and in particular a unique median for any
odd outcome-sample), to give a sound meaning to the notion of a compro-
mise between any two outcomes, thereby making it also possible to define
unimodal preferences.
It follows that the network geometry of the outcome space is a key is-

sue when discussing the scope of median voter theorems. The classic versions
of the ‘committee’-variety assume outcome spaces consisting of a bounded
line or chain (Black (1948), Moulin (1980)), a finite tree under metric uni-
modal preferences (Wendell, McKelvey (1981)), an arbitrary median algebra
or median semilattices under metric preference profiles (Bandelt, Barthélemy
(1984), or a bounded tree under preference profiles of linear orders (Danilov
(1994)).
The present paper is devoted to a wider analysis of the scope of the

‘committee’-variety of median voter theorems by focusing on unimodal do-
mains of incidence-type -as opposed to metric- type- in an arbitrary
median interval space (see van de Vel (1993) and Coppel (1998) for an
extensive in-depth treatment of interval spaces).

2 On the scope of the ‘median voter theo-
rem’: basic definitions and preliminaries

2.1 The structure of the outcome space: defining me-
dian interval spaces and related structures

Let I = (X, I) be the interval space of alternative outcomes, i.e. X is an
arbitrary nonempty set and I an interval function on X, namely I : X2 →
P(X) is a function that satisfies the following conditions:

I-(i) (Extension): {x, y} ⊆ I(x, y) for all x, y ∈ X,
I-(ii) (Symmetry): I(x, y) = I(y, x) for all x, y ∈ X.
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In particular, will be mostly concerned with idempotent interval spaces
i.e. with interval spaces that also satisfy
(Idempotence): I(x, x) = {x} for all x ∈ X.
A subset Y ⊆ X is I-convex iff I(x, y) ⊆ Y for all x, y ∈ Y . For any

Y ⊆ X, the I-convex hull of Y - denoted coI(Y )- is the smallest I-convex
superset of Y , namely coI(Y ) =

⋂
{A ⊆ X : A is I-convex and A ⊇ Y }.

An interval space I = (X, I) is convex (or interval-monotonic) if I also
satisfies
(Convexity): I(x, y) is I-convex for all x, y ∈ X.
Observe that Idempotence and Convexity are indeed mutually indepen-

dent properties of interval spaces. To confirm that statement, consider inter-
val spaces I1 = (X, I1), I2 = ({x, y, v, z} , I2) where #X > 1, # {x, y, v, z} =
4, I1(a, b) = X for all a, b ∈ X, while I2(x, y) = {x, y, z}, I2(y, z) = {y, v, z},
and I2(a, b) = {a, b} for all a, b ∈ X such that {x, y} 6= {a, b} 6= {y, z}. It
is immediately checked that I1 is convex but not idempotent, while I2 is
idempotent but not convex since {y, z} ⊆ I2(x, y) and v ∈ I2(y, z) \ I2(x, y).
Furthermore, an idempotent interval space I = (X, I) is said to be a

median space if I satisfies the following
(Median property): for all x, y, z ∈ X, |(I(x, y)∩ I(y, z)∩ I(x, z))| = 1
The common point of the three intervals defined by each pair of any three

points x, y, z in a median interval space I =(X, I) is said to be the median
of those points, that therefore defines a ternary operation -the median µI-
on X: the pairMI = (X,µI) is the ternary algebra induced by median
interval space I.
It is well-known that any median interval space is also idempotent and

convex (see Mulder (1980), Theorem 3.1.4).
An interval space I = (X, I) is discrete if I(x, y) is finite for all x, y ∈ X.
The following property will play a key role in the ensuing analysis
(Interval Anti-Exchange (IAE)): for all x, y, v, z ∈ X such that x 6= y,

if x ∈ I(y, v) and y ∈ I(x, z) then x ∈ I(v, z).
It should be noticed here that Interval Anti-Exchange, Idempotence and

Convexity are mutually independent properties of an interval space1.

1To check that statement, consider the following interval spaces: (i)(X = {x, y, u, v} , I)
with I(x, y) = {x, u, y}, I(u, y) = {u, v, y} and I(a, b) = {a, b} for all {a, b} /∈
{{x, y} , {u, y}}, which is by construction idempotent and can be easily shown to sat-
isfy IAE, but is clearly not convex; (ii) (X = {x, y} , I) with I(x, x) = I(x, y) = {x, y},
I(y, y) = {y}: that interval space is not idempotent but -as it is easily seen- it satisfies
IAE and is obviously convex; (iii)(X = {x, y, z} , I) with I(x, z) = I(y, z) = {x, y, z}, and
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A few supplementary basic notions are also to be introduced here.
A median algebra is a pair M = (X,µ) where X is a set and µ :

X3 → X is a ternary operation on X -the median operation- that satisfies
the following three properties:
MA(i) µ(x, x, y) = x for all x, y ∈ X, MA(ii) µ(x, y, z) = µ(y, x, z) =

µ(y, z, x) for all x, y, z ∈ X, MA(iii) µ(µ(x, y, z), u, v) = µ(x, µ(y, u, v), µ(z, u, v))
for all x, y, z, u, v ∈ X.
The interval space Iµ = (X, Iµ) induced by median algebraM =

(X,µ) is defined as follows: for each x, y ∈ X,
Iµ(x, y) = {z ∈ X : µ(x, z, y) = z}.
A median algebra is discrete iff Iµ(x, y) is finite for all x, y ∈ X.
Let us now consider an ordered pair X = (X,6) where is 6 a reflexive,

transitive and antisymmetric binary relation on X, and denote by ∨ and ∧
the least-upper-bound and greatest-lower-bound binary partial operations on
X as induced by 6, respectively. Moreover, for any x, y ∈ X, x is said to
cover y -written y � x- if y 6 x and there is no z ∈ X r {x, y} such that
y 6 z 6 x.
The ordered pair X = (X,6) is a median semilattice if and only if
(i) x∧ y is well-defined in X for all x, y ∈ X i.e. X is a meet-semilattice;
(ii) for all u ∈ X, and for all x, y, z ∈ X such that u is an upper bound

of {x, y, z}, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (or, equivalently, x ∨ (y ∧ z) =
(x ∨ y) ∧ (x ∨ z)) holds i.e. (↓ u,6|↓u) -where 6|↓udenotes the restriction of
6 to ↓ u = {x ∈ X : x 6 u}- is a distributive lattice2 i.e. X itself is a lower
distributive meet-semilattice;
(iii) for all x, y, z ∈ X if x∨ y, y∨ z and x∨ z exist, then (x∨ y)∨ z also

exists i.e. X satisfies the coronation (or join-Helly) property.
It is easily checked that if X = (X,6) is a median meet-semilattice then

the partial function µ : X3 → X defined as follows: for all x, y, z ∈ X
µ(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z)

is indeed a well-defined ternary operation X, the median of X .
A partially ordered set X = (X,6) is discrete if it has no infinite

bounded chain (i.e. there are no Y ⊆ X and a, b ∈ Y such that x 6 y
or y 6 x for all x, y ∈ Y , a 6 x 6 b for all x ∈ Y , and Y is an infinite set).

I(a, b) = {a, b} for all {a, b} /∈ {{x, z} , {y, z}}, which is by construction idempotent and
convex but fails to satisfy IAE since x ∈ I(y, z), y ∈ I(x, z) and x /∈ I(z, z).

2A poset (Y,6) is a distributive lattice iff, for any x, y, z ∈ X , x ∧ y and x ∨ y exist,
and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (or, equivalently, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)).
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It is worth recalling here that the notion of median semilattice -under
the alternative label of ‘ternary distributive semi—lattice’- is due to Avann
(1948), while the notion of median algebra is mainly due to Sholander (1952):
both of these developments did rely on earlier, seminal ideas introduced by
Birkhoff, Kiss (1947) (see Bandelt, Hedlíková (1983) for more details).
A (simple) graph is a pair G = (X,E) where X is a set -the set of

vertices- and E ⊆ {{x, y} : x, y ∈ X} denotes the set of edges: the order of
G is |X| (where |X| denotes the cardinality of set X), and for each vertex
x ∈ X the degree of x is deg(x) = | {y ∈ X : {x, y} ∈ E} |. A graph is regular
if deg(x) = deg(y) for all x, y ∈ X. For any x, y ∈ X, a (simple, elementary)
path joining x and y in G is a bounded well-ordered set of pairwise distinct
edges {Ei}i∈I of G such that x ∈ E0 , y ∈ Ei∗ (where E0 and Ei∗ denote the
minimum and maximum edges of path {Ei}i∈I), |Ei ∩Emin{j∈I:i<j}| = 1, and
for each z ∈ ∪i∈IEi, z ∈ Ei ∩Ej only if Ei = Ej or Ej = Emin{j∈I:i<j}(i.e. no
repetition of vertices allowed in distinct nonconsecutive edges). The length
of path {Ei}i∈I in G is given by |I|. A cycle of graph G is a path of length
l > 1 joining x and y ∈ X in G with x = y. A graph is said to be acyclic (or
a forest) if it has no cycles, and connected if for each x, y ∈ X there exists a
path joining x and y in G. A tree is an acyclic connected graph: clearly, for
any two vertices of a tree there exists a unique path joining them. For any
x, y ∈ X a geodesic of G for that pair is a path of minimum length joining x
and y in G: if G is a connected graph the length of a geodesic between any
two vertices x, y defines a distance between them, denoted dG(x, y). Notice
that, for any x, y ∈ X, a vertex z ∈ X belongs to some geodesic joining x
and y if and only if dG(x, y) = dG(x, z)+ dG(z, y). If in particular G is a tree
then there exists precisely one path joining any two vertices, and that unique
path is also the geodesic of the tree for them. An (extended) median of
a finite set {x1, ..., xk} ⊆ X of vertices of G is a vertex mG ∈ X such that

mG ∈ argminy∈X
k∑
i=1

dG(y, xi).

The graph GI = (X,EI) induced by interval space I =(X, I) is
defined as follows: for each x, y ∈ X, {x, y} ∈ EI if and only if I(x, y) =
{x, y}.
The graph Gµ = (X,Eµ) induced by median algebraM = (X,µ) is

defined as follows: for each x, y ∈ X, {x, y} ∈ Eµ if and only if Iµ(x, y) =
{x, y}: if GM = (X,Eµ) is connected, then the median algebraM = (X,µ)
is said to be discrete.
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The covering graph G6 = (X,E6) of a discrete partially ordered set
X = (X,6) is defined by the following rule: for each x, y ∈ X, {x, y} ∈ E6
if and only if either x� y or y � x.
The interval space = (X, IG) induced by graph G = (X,E) is defined

as follows: for each x, y ∈ X,
IG(x, y) = {z ∈ X : dG(x, y) = dG(x, z) + dG(x, z)},
namely a vertex belongs to the interval between x and y if and only if it

lies on some geodesic joining x and y.
It is well-known that the interval spaces induced by trees are median (see

Lemma 7 below for a sketch of the proof).
A median graph is a graph G whose induced interval space IG is a

median interval space as defined above.

2.2 Unimodal preferences on interval spaces: unimodal-
ity as a incidence-based notion

Let < denote a total preorder i.e. a reflexive, connected and transitive binary
relation on X (we shall denote by � and ∼ its asymmetric and symmetric
components, respectively). Then, < is said to be unimodal with respect to
interval space I = (X, I) - or I-unimodal - if and only if

U -(i) there exists a unique maximum of < in X, its top outcome -denoted
top(<)- and

U -(ii) for all x, y, z ∈ X, if z ∈ I(x, y) then {u ∈ X : z < u}∩{x, y} 6= ∅.
We denote by UI the set of all I-unimodal total preorders on X. An N -

profile of I-unimodal total preorders is a mapping fromN into UI . We denote
by UN

I the set of all N -profiles of I-unimodal total preorders. Notice that I-
unimodality is an incidence-theoretic notion which should be contrasted with
metric unimodality that relies on a metric space (X, d∗), requiring again a
unique maximum x∗ but positing y <∗x z if and only if d∗(x, y) 6 d∗(x, z).

2.3 Voting rules and their properties

Let N = {1, .., n} denote the finite population of voters (we assume |N | ≥ 2
to avoid tedious qualifications). A voting rule for (N,X) is a function
f : XN → X . A voting rule f is (simply) strategy-proof on UN

I iff
for all I-unimodal N -profiles (<i)i∈N ∈ UN

I , and for all i ∈ N , yi ∈ X,
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and (xj)j∈N ∈ XN such that xj = top(<j) for each j ∈ N , f((xj)j∈N) <i

f((yi, (xj)j∈Nr{i})). Moreover, a voting rule f is coalitionally strategy-
proof on UN

I iff for all I-unimodal N -profiles (<i)i∈N ∈ UN
I , and for all

C ⊆ N , (yi)i∈C ∈ XC , and (xj)j∈N ∈ XN such that xj = top(<j) for each
j ∈ N , there exists i ∈ C with f((xj)j∈N) <i f((yi)i∈C , (xj)j∈NrC)). Finally,
a voting rule f : XN → X is I-monotonic iff for all i ∈ N , yi ∈ X, and
(xj)j∈N ∈ XN , f((xj)j∈N) ∈ I(xi, f(yi, (xj)j∈Nr{i})). An outcome x ∈ X
is a Condorcet winner (CW) at preference profile (<i)i∈N ∈ UN

I iff for
all y ∈ X, nxy((<i)i∈N) ≥ nyx((<i)i∈N) where, for any u, v ∈ X, nuv =
{i ∈ N : u <i v}. The set of all Condorcet winners at profile (<i)i∈N ∈ UN

I
is also written CW ((<i)i∈N). A voting rule f : XN → X is a CW-selection
on UN

I iff -for all N -profiles (<i)i∈N ∈ UN
I - f((top(<i)i∈N)) ∈ CW ((<i)i∈N)

2.4 Some basic results about median interval spaces
and related structures

We collect in that subsection some well-known basic facts to be used below
about the tight connection between median interval spaces, median algebras,
median semilattices and median graphs as established in some early, funda-
mental works by Sholander (1952, 1954(a), 1954(b)), and Avann (1961).

Proposition 1 (Sholander (1954 (a))) If M = (X,µ) is a median algebra
then its induced interval space Iµ = (X, Iµ) is median. Conversely, if I =
(X, I) is a median interval space then the ternary operation µI : X

3 → X as
defined by the rule µI(x, y, z) = m such that {m} = I(x, y)∩ I(y, z)∩ I(x, z)
induces a median algebraMI = (X,µI);

Proposition 2 (Sholander (1954(b), and (1952))): If X = (X,6) is a
median semilattice then the ternary operation µX on X as defined by the rule
µX (x, y, z) = (x∧y)∨(y∧z)∨(x∧z) induces a median algebraMX = (X,µX ).
Conversely if M = (X,µ) is a median algebra then for any x ∈ X positing
y 6x,µ z if and only if µ(x, y, z) = y and defining x ∧′ y = inf(6x,µ)) {x, y}
and x ∨′ y = sup(6x,µ)) {x, y} (where ∨′ is a partial operation ) induces a
median semilattice Xx,µ = (X,6x,µ) such that for all x, y, z ∈ X, (x ∧′ y) ∨
(y ∧′ z) ∨ (x ∧′ z) = µ(x, y, z) (hence the median of the semilattice does not
depend on the choice of x).
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Proposition 3 (Avann (1961)): The covering graph GX = (X,E6) of a
discrete median semilattice X = (X,6) is a median graph, and the graph
GM = (X,Eµ) induced by a discrete median algebra M = (X,µ) is also a
median graph. Moreover, GX = GMX .
Conversely, for every median graph G = (X,E), there exists a unique

median algebraM = (X,µ) hence a unique median interval space I = (X, I)
such that G = Gµ = GI (with µ(x, y, z) = m such that IG(x, y) ∩ IG(y, z) ∩
IG(x, z) = {m} for all x, y, z ∈ X).

We shall also make use of the following result:

Proposition 4 (Bandelt, Barthelémy (1984)) Let X = (X,6) be a dis-
crete semilattice. Then X is a median semilattice if and only if for any
positive integer k and any set {x1, ..., x2k+1} ⊆ X , the (extended) median
µ∗(x1, ..., x2k+1) = ∨S⊆N,|S|=k+1 ∧h∈S xh is well-defined, and is the unique
(extended) median of {x1, ..., x2k+1} in the covering graph of X .

3 Median interval spaces and the scope of the
‘median voter theorem’

We are now ready to state the main results of this paper concerning the
equivalence of strategy-proofness and coalitional strategy-proofness of vot-
ing rules on the domain of all unimodal profiles. Our results rely on the
following proposition that establishes the equivalence between monotonicity
with respect to an arbitrary convex idempotent interval space I and strategy-
proofness on the corresponding (full) unimodal domain UN

I .

Proposition 5 (see Vannucci (2013) ) Let I = (X, I) be a convex interval
space. Then, a voting rule f : XN → X is strategy-proof on the full unimodal
domain UN

I iff it is I-monotonic.
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Theorem 6 (Vannucci (2013)) Let I = (X, I) be a convex idempotent in-
terval space that satisfies interval anti-exchange (IAE), and f : XN → X a
voting rule that is strategy-proof on the full unimodal domain UN

I . Then, f
is also coalitionally strategy-proof on UN

I .

Lemma 7 Let I = (X, I) be a median interval space, N = {1, ..., 2k + 1}
for some positive integer k, x∗ ∈ X, and µI,x∗ : X

N −→ X the extended
n-ary median rule on X with respect to x∗. Then µI,x∗ is I-monotonic.

Proof. To begin with, notice that the thesis reduces to showing that for each
xN ∈ XN , i ∈ N , and y ∈ X, µI,x∗(xN) = µI(xi, µx∗(xN), µx∗(y, xNr{i})),
since by definition

µI(xi, µI,x∗(xN), µI,x∗(y, xNr{i})) = m ∈ X such that {m} = I(xi, µI,x∗(xN))∩
I(µI,x∗(xN), µI,x∗(y, xNr{i})) ∩ I(xi, µI,x∗(y, xNr{i})) whence

µI,x∗(xN) = m ∈ I(xi, µI,x∗(y, xNr{i})).
Now,
µI,x∗(xN) = ∨S⊆N,|S|=k+1 ∧h∈S xh =
= (∨S⊆Nr{i},|S|=k+1,i∈S ∧h∈S xh) ∨ (xi ∧ ∨T⊆N,|T |=k+1,i∈T ∧h∈Tr{i} xh)
while µI,x∗(xi, µI,x∗(xN), µI,x∗(y, xNr{i})) = (xi ∧ ((∨S⊆N,|S|=k+1,i/∈S ∧h∈S

xh)∨
∨(∨T⊆N,|T |=k+1,i∈T (xi ∧ (∧h∈Tr{i}xh)))∨
∨((∨S⊆N,|S|=k+1,i/∈S∧h∈Sxh)∨(∨T⊆N,|T |=k+1,i∈T (xi∧(∧h∈Tr{i}xh)))∧((∨S⊆N,|S|=k+1,i/∈S∧h∈S

xh)∨
(∨T⊆N,|T |=k+1,i∈T (y ∧ (∧h∈Tr{i}xh)))∨
∨(xi ∧ ((∨S⊆N,|S|=k+1,i/∈S ∧h∈S xh) ∨ (∨T⊆N,|T |=k+1,i∈T (y ∧ (∧h∈Tr{i}xh))).
Clearly,
∨S⊆N,|S|=k+1∧h∈Sxh = (∨S⊆N,|S|=k+1,i/∈S∧h∈Sxh)∨(∨T⊆N,|T |=k+1,i∈T (∧h∈Txh)),
(xi ∧ ((∨S⊆N,|S|=k+1,i/∈S ∧h∈S xh)∨ (∨T⊆N,|T |=k+1,i∈T (xi ∧ (∧h∈Tr{i}xh))) =
(xi ∧ (∨S⊆N,|S|=k+1,i/∈S ∧h∈S xh)) ∨ (∨T⊆N,|T |=k+1,i∈T ∧h∈T xh)),
(∨S⊆N,|S|=k+1,i/∈S ∧h∈S xh) ∨ (∨T⊆N,|T |=k+1,i∈T (xi ∧ (∧h∈Tr{i}xh)))∧
∧((∨S⊆N,|S|=k+1,i/∈S ∧h∈S xh) ∨ (∨T⊆N,|T |=k+1,i∈T (y ∧ (∧h∈Tr{i}xh))) =
= (∨S⊆N,|S|=k+1,i/∈S ∧h∈S xh)∨
∨(∨T⊆N,|T |=k+1,i∈T (xi∧(∧h∈Tr{i}xh))∧(∨T⊆N,|T |=k+1,i∈T (y∧(∧h∈Tr{i}xh))),
(xi ∧ ((∨S⊆N,|S|=k+1,i/∈S ∧h∈S xh) ∨ (∨T⊆N,|T |=k+1,i∈T (y ∧ (∧h∈Tr{i}xh))) 6
6 (xi ∧ (∨S⊆N,|S|=k+1,i/∈S ∧h∈S xh)) ∨ (∨T⊆N,|T |=k+1,i∈T ∧h∈T xh)),
whence
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µI(xi, µI,x∗(xN), µI,x∗(y, xNr{i})) =
= (xi ∧ (∨S⊆N,|S|=k+1,i/∈S ∧h∈S xh)) ∨ (∨T⊆N,|T |=k+1,i∈T ∧h∈T xh)) =
=∨S⊆N,|S|=k+1 ∧h∈S xh
as required.

Lemma 8 Let I = (X, I) be a median interval space, N = {1, ..., 2k + 1}
for some positive integer k, x∗ ∈ X and µx∗ : X

N −→ X the n-ary median
rule on X. Then, µx∗ is coalitionally strategy-proof on U

N
I only if it is also

a CW-selection on UN
I .

Proof. Indeed, suppose that on the contrary µx∗ is coalitionally strategy-
proof on on UN

I but is not a CW-selection on U
N
I . Then, there exist y ∈ X,

<N ∈ UN
I and xN ∈ XN such that xi = top(<i) for all i ∈ N , µx∗(xN) =

z and nyz((<i)i∈N) = | {i ∈ N : y <i z} | > |N |/2 hence nzy((<i)i∈N) =
| {i ∈ N : z �i y} | < |N |/2. Now, posit S = {i ∈ N : y �i z} and yS = (yi =
y)i∈S. Thus, by definition, µx∗(yS, xNrS) = y which is therefore manipulable
by S at (<i)i∈N i.e. is not strategy-proof on UN

I , a contradiction.

Theorem 9 Let I = (X, I) be a median interval space. Then,
(i) for any positive integer k, N = {1, 2, ..., 2k + 1}, and x∗ ∈ X, if I sat-

isfies interval anti-exchange then the (extended) median rule µI,x∗ : X
N −→

X is a CW-selection on UN
I ;

(ii) for any positive integer k, N = {1, 2, ..., 2k + 1} and x∗ ∈ X, if I is
discrete and the (extended) median rule µI,x∗ : X

N −→ X is a CW-selection
on UNI then the µI-induced graph GµI = (X,EµI ) is a tree.

Proof. (i) Let I = (X, I) be an interval space that satisfies interval anti-
exchange. By Lemma 6, for any N of odd size and any x∗ ∈ X, the ex-
tended median µI,x∗ : X

N −→ X is I-monotonic, hence strategy-proof on
UN
I by Proposition 4. Therefore, by Theorem 5 above, µI,x∗ is also coali-
tional strategy-proof on UN

I . It follows that, by Lemma 7 above, µI,x∗ is a
CW-selection on UN

I .
(ii) To begin with, recall that -for all x, y ∈ X- (x, y) ∈ EµI iff IµI (x, y) :=

I(x, y) = {x, y} by definition, and observe that by Proposition 1 (ii), µI,x∗ =
µI for all x

∗ ∈ X. Also, notice that if µI,x∗ is a CW-selection on UN
I then I-

induced graph GµI = (X,EµI ) must be square-free: to see this, suppose that
it is not i.e. there exist four distinct elements x, y, v, z ∈ X such that EµI =
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{{x, y} , {y, z} , {z, v} , {v, x}} hence IµI (x, y) = {x, y}, IµI (x, v) = {x, v},
IµI (y, z) = {y, z}, IµI (v, z) = {v, z}. Also, IµI (x, z) = IµI (y, v) = {x, y, v, z}
(because it must be the case that {x, z} ⊂ IµI (x, z) and {y, v} ⊂ IµI (y, v),
but as it easily checked I would not be median in case |IµI (x, z)| = 3 or
|IµI (y, v)| = 3). Next, consider total preorder profile (<∗,<′,<◦) such that
v �∗ z �∗ x ∼∗ y ∼∗ u, y �′ z �′ x ∼′ v ∼′ u, and x �◦ y ∼◦ v ∼◦ z ∼◦ u
for all u ∈ X. By construction, I-unimodality of <∗and <′, and <◦only
requires that [ a /∈ IµI (v, z) for all a ∈ X r {v, z}], [ a /∈ IµI (y, z) for
all a ∈ X r {y, z}], respectively, while <◦is unimodal for any choice of
an interval function on X. Therefore, (<∗,<′,<◦) ∈ U3I i.e. is unimodal.
Now, the median µI : X

3 −→ X as defined by the rule µI(z1, z2, z3) = m
such that {m} = IµI (z1, z2) ∩ IµI (z2, z3) ∩ IµI (z1, z3) for any z1, z2, z3 ∈ X
(according to Proposition 1 (i)) is not a CW-selection on U3I since IµI (v, y)∩
IµI (y, x) ∩ IµI (v, x) = {x, y, v, z} ∩ {x, y} ∩ {x, v} = {x} hence µ(top(<∗
), top(<′), top(<◦)) = µ(v, y, x) = x but nzx((<∗,<′,<◦)) = 2 while nxz((<∗
,<′,<◦)) = 1. Furthermore, observe that I = (X, I) is a discrete median
interval space implies - by Proposition 1 (ii) and Proposition 2 above- that
GµI = (X,EµI ) is amedian graph hence cannot include any odd cycle (indeed,
if (x0, x1, ..., x2k, x0) then IGµI (xk, xk+1) = {xk, xk+1}, xk /∈ IGµI (x0, xk+1) and
xk+1 /∈ IGµI (x0, xk) whence IGµI (xk, xk+1)∩IGµI (x0, xk+1)∩IGµI (x0, xk) = ∅).
Thus, the shortest cycle in GµI = (X,EI,x) has to be of length h = 2k with
k ≥ 3. Let then (x1, ..., x2k, x1) be one such cycle, and consider the triple
(x1, x3, xk+2): by construction, IGµI (x1, x3) = {x1, x2, x3}, IGµI (x3, xk+2) =
{x3, ..., xk+2}, and -since 2k − (k + 2) + 1 = k − 1-

IGµI (x1, xk+2) = {xk+2, xk+3, ..., x2k, x1}, whence IGµI (x1, xk+2)∩IGµI (x1, x3)∩
IGµI (x3, xk+2) = ∅, a contradiction again. It follows that GµI is acyclic as
claimed. But, since I is discrete, GµI is also connected, hence is indeed a
tree.

Hence, in particular, the median rule is not a CW-selection on UN
I when

GµI = (X,EµI ) is a square (i.e. a finite, regular, median graph of order four).
That result is to be contrasted with Proposition 9 of Bandelt, Barthélemy
(1984) which establishes that the median rule selects the strict Condorcet
winner on any profile of metric unimodal total preorders of a median inter-
val space (X, I) if and only if GµI = (X,EµI ) is cube-free (namely does not
include a cube, i.e. a finite, regular, median graph of order eight). Notice
however that a metric unimodal total preorder on a square cannot be (in-
cidence) unimodal, and conversely an (incidence) unimodal total preorder
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cannot be metric unimodal. Another implication of Theorem 9 is that the
(extended) median rule invariably selects a Condorcet winner on an odd (in-
cidence) unimodal domain UN

I whenever I = (X, I) is the interval space
canonically induced by a tree, as made precise by the following Lemma and
Corollary.

Lemma 10 Let G = (X,E) be a tree and IG = (X, IG) the interval space
induced by G. Then IG is median and satisfies interval anti-exchange.

Proof. That IG = (X, IG) is median whenever G is a tree is a well-known
fact: let us provide an informal sketch of the proof for the sake of complete-
ness. Take any x, y, z ∈ X, and consider any pair of them, say x and y. By
definition of tree there exists a unique path from x to y. If z belongs to that
path we are done, because by construction z ∈ IG(x, y) ∩ IG(y, z) ∩ IG(x, z)
and any other v ∈ IG(x, y) would be either in IG(y, z) or in IG(x, z) but could
not possibly be in IG(y, z) ∩ IG(x, z). By contrast, if z does not belong to
the unique path joining x and y, consider the unique path joining z and one
of the other two vertices, say x: y either lies on that path or it doesn’t. If
it does, then clearly y ∈ IG(x, y) ∩ IG(y, z) ∩ IG(x, z), and any other vertex
v ∈ IG(x, z), again, will belong to either IG(x, y) or to IG(y, z) but not to
IG(x, y) ∩ IG(y, z). If it doesn’t, then x ∈ IG(x, y) ∩ IG(y, z) ∩ IG(x, z),and
any other vertex v ∈ IG(x, z), will not belong to IG(x, y). Thus, in any case
|IG(x, y) ∩ IG(y, z) ∩ IG(x, z)| = 1 i.e. (X, IG) is median.
Concerning interval anti-exchange, let x, y ∈ X, x 6= y, such that x ∈

IG(y, v) and y ∈ IG(x, z) namely
dG(y, v) = dG(y, x)+ dG(x, v) and dG(x, z) = dG(x, y) + dG(y, z).
Thus, dG(x, v) = dG(y, v)−dG(x, y), whence dG(z, x)+dG(x, v) = dG(x, y)+

dG(y, z) + dG(y, v)− dG(x, y) = dG(z, y) + dG(y, v).
But then, since x is on the unique path joining y and v, and y is on

the unique path joining x and z, there exists a path through y joining z
and v, whence dG(z, v) = dG(z, y) + dG(y, v). It follows that dG(z, v) =
dG(z, x) + dG(x, v), i.e. x ∈ IG(v, z) as required.

Corollary 11 Let G = (X,E) be a tree and IG = (X, IG) the interval space
induced by G, N = {1, 2, ..., 2k + 1} for some positive integer k, and x ∈ X.
Then, the median rule µx : X

N −→ X is a CW-selection on UN
IG .
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Proof. Immediate from Theorem 9 and Lemma 10.

Remark Notice that the foregoing Corollary is essentially stronger than
Theorem 4 in Wendell, McKelvey (1981) which establishes that the median is
the unique strict Condorcet winner on the set of metric unimodal profiles of
an odd population of voters if G = (X,E) is a finite tree: indeed, finiteness of
G is not required, and metric-unimodal total preorders on trees are a proper
subclass of incidence-unimodal total preorders.

4 Concluding remarks

Versions of the median voter theorem of the ‘committee’-variety for met-
ric unimodal preference domains are known to hold when the underlying
outcome set is a finite tree (see Wendell, McKelvey (1981)), and, more gen-
erally, if and only if it is cube-free i.e. does not include a cube (see Bandelt,
Barthélemy (1984)): the latter condition clearly implies that the median
voter theorem holds for metric unimodal domains over a square. Those
facts are to be contrasted with our results concerning the median voter the-
orem for incidence-unimodal domains of total preorders as summarized by
Theorem 9: indeed, Theorem 9 (i) implies that the median voter theorem
holds whenever the outcome space is any (possibly infinite) tree or any me-
dian geometry that satisfies the interval anti-exchange property as discussed
above (a generalization of both Moulin (1980) and Danilov (1994)). On the
other hand, Theorem 9 (ii) establishes that the median voter theorem fails
for incidence-unimodal domains of total preorders over a square and more
generally whenever the network structure induced by the interval space of
the outcome set is discrete but not a tree.
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