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Abstract

It is shown that a two-valued and nonsovereign voting rule is
strategy-proof on any preference domain that includes all profiles of
total preorders with a unique maximum if and only if votes for nonel-
igible feasible alternatives are only available to dummy voters.

It follows that dummy-free two-valued nonsovereign strategy-proof
voting rules with a suitably restricted ballot domain do exist and es-
sentially correspond to dummy-free sovereign strategy-proof voting
rules for binary outcome spaces or, equivalently, to ordered transver-
sal pairs of order filters of the coalition poset, and are also coalitionally
strategy-proof. Moreover, it turns out that two-valued nonsovereign
strategy-proof voting rules with full ballot domain do not exist.

JEL Classification: D71



1 Introduction

Good public decisions rely on information that is usually distributed among
several stakeholders, and private. Thus, voting by a committee is a very
effective way to elicit and amalgamate that information provided the under-
lying voting rule is strategy-proof, namely resistant to disruptive attempts
at manipulation on the part of individual voters (and coalitionally strategy-
proof as well if voters can communicate). But not all strategy-proof voting
rules are acceptable. In principle, every stakeholder should have a say on the
final decision, and every feasible alternative should have a chance to prevail
when supported by a suitably large coalition of voters. Therefore, each voter
should be able to influence the final outcome under certain profiles of votes,
and each feasible outcome should be actually eligible under some distribu-
tions of votes: in other terms, a nice strategy-proof voting rule should be fully
polyarchic -or dummy-free- and sovereign. Of course, those requirements rule
out -in particular- projections or dictatorial rules and constant rules that are
indeed coalitionally strategy-proof but also clearly violate dummy-freeness,
and both dummy-freeness and sovereignty, respectively.

It is well-known that if there are only two feasible outcomes then dummy-
freeness and sovereignty are in fact mutually consistent properties for some
strategy-proof voting rules. Even with just two voters duple asymmetric-veto
voting rules (requiring unanimity to choose one of the two alternatives and
just one favourable vote to choose the other one) are indeed dummy-free,
sovereign and coalitionally strategy-proof. Moreover, with three or more
voters, several variants of the simple majority rule -that are indeed dummy-
free, sovereign and coalitionally strategy-proof- are also available.

With three or more feasible outcomes, however, the prospects for nice
strategy-proof voting rules look definitely much less promising. In fact, the
well-known Gibbard-Satterthwaite theorem implies that in that case dummy-
freeness and sovereignty (or indeed even just allowance for at least three dis-
tinct eligible outcomes within its range) are inconsistent properties for any
strategy-proof voting rule unless the admissible preference preorders of vot-
ers are suitably restricted (see e.g. Danilov, Sotskov (2002), Taylor (2005)).
Thus, with three or more feasible outcomes and no demanding restrictions
on admissible preference rankings, one should rather take into consideration
some weaker combination of the former polyarchy-cum-sovereignty require-
ments. In that connection, it seems to be quite natural to focus on two min-
imal versions of the foregoing polyarchy and sovereignty properties, namely



‘minimal polyarchy’ (‘there exist at least two nondummy voters’) and ‘mini-
mal sovereignty’ (‘the range of the voting rule comprises at least two distinct
outcomes’).

Therefore, one might consider the prospects for either ‘minimal polyarchy’
and sovereignty, or dummy-freeness and ‘minimal sovereignty’ of a strategy-
proof voting rule. Unfortunately, as it is immediately apparent, the Gibbard-
Satterthwaite theorem also rules out the existence of strategy-proof voting
rules that satisfy both ‘minimal polyarchy’ and sovereignity, by establishing
that only dictatorships are strategy-proof among the voting rules admit-
ting three or more distinct outcomes in their range: arguably, that is one
very good reason to regard the Gibbard-Sattertshwaite as an ‘impossibility
theorem’, precisely as it has been always done in the social choice and vot-
ing literature. Thus, it only remains to be explored the other possibility,
namely the existence of dummy-free and ‘minimally sovereign’ strategy-proof
voting rules or equivalently -in view of the Gibbard-Satterthwaite theorem-
of two-valued (hence in particular nonsovereign) dummy-free strategy-proof
voting rules. A similar analysis of two-valued nonsovereign strategy-proof
social choice functions with arbitrary domains of profiles of total preorders
has been recently produced by Barbera, Berga, Moreno (2012) (but see also
Larsson, Svennson (2006) and Manjunath (2009)), implying that both duple
asymmetric-veto and duple serial dictatorships provide examples of nonsov-
ereign dummy-free and coalitionally strategy-proof social choice functions.
Relying on a much more parsimonious information base, voting rules may
be regarded as a proper subclass of social choice functions, but at the same
time they also offer both less available strategies and more opportunities for
manipulation. Thus, a special analysis is required for a characterization of
two-valued nonsovereign, dummy-free, and strategy-proof voting rules having
arbitrary ballot domains i.e. arbitrary subspaces of the outcome set as strat-
egy spaces. The present note is aimed at filling this small but significant gap
in the literature. We shall prove that under suitably restricted ballot domains
such voting rules do indeed exist, but essentially coincide with dummy-free
sovereign and strategy-proof voting rules for binary outcome sets, including
simple majority-based rules. Furthermore, two-valued nonsovereign strategy-
proof voting rules are in one-to-one correspondence with ordered transversal
pairs of order filters of the coalition poset (denoting the families of weakly de-
cisive coalitions for the two eligible outcomes). It will also be shown that, by
contrast, two-valued nonsovereign strategy-proof voting rules with full ballot
domain -i.e. allowing votes over the entire outcome space- do not exist.
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2 Two-valued nonsovereign strategy-proof vot-
ing rules

Let N = {1,...,n} denote the population of voters and X the set of alter-
native outcomes: we assume |N| > 2 and |X| > 3. Thus, the power set
P(N) of N denotes the set of all possible coalitions, and partially ordered
set (P(N), C) denotes the coalition poset. A family W C P(N) of coalitions
is an order filter of (P(N), Q) iff for any S, C N,if Se€ Wand S C T
then T" € W. For any Y C X, let = denote a total preorder i.e. a reflexive,
connected and transitive binary relation on Y (we shall denote by > and ~
its asymmetric and symmetric components, respectively). We denote by Uy
the set of all total preorders on Y. For any (Y; C X);en, a N-profile on
(Uy, )ien is a function mapping each ¢ € N into =;€ Uy, and I1;c yUy, the set
of all such profiles, or universal preference domain of total preorders on Y;,
1 =1,...,n. We also assume that each Y C X is endowed with an interval
function I :Y? — P(Y) such that Zy = (Y, Iy) is an interval space i.e.
Iy satisfies the following two conditions:

I-(i) (Extension): {z,y} C Iy(z,y) for all x,y € Y,

I-(ii) (Symmetry): Iy(z,y) = Iy(y,z) for all z,y € Y.

In particular, we also assume that n > 2 in order to avoid tedious quali-
fications, and that Zy = (Y, Iy) is an idempotent interval space namely that

(Idempotence): Iy(x,z) = {z} forall x € X

is also satisfied.

A subset Z C Y C X is Zy-convex iff Iy(x,y) C Z for all x,y € Z. For
any Z C Y, the Zy-convex hull of Z - denoted cor, (Z)- is the smallest Zy-

convex superset of Z, namely coz, (Z) = ﬂ {ACY : AisZy-convexr and A D Z}.

An interval space Zy = (Y, Iy) is convez if Iy also satisfies

(Convexity): Iy (z,y) is Zy-convex for all z,y € Y.

Then, = is said to be unimodal with respect to interval space Zy = (Y, Iy)
- or Zy-unimodal - if and only if

U-(i) there exists a unique mazimum of = in Y, its top outcome -denoted
top(=)- and

U-(ii) forall z,y,z € X,if z € Iy(z,y) then {u € Y : z = u}n{z,y} # 2.

We denote by Uz, the set of all Zy-unimodal total preorders on Y. For



any (Y; C X)ien, a N-profile on (Uz,. )ien is a function mapping each i € N
into >=;€ Uzyi, and IT;¢ NUIyi denotes the set of all N-profiles of Zy,-unimodal
total preorders.

In particular, we shall focus on the clique-induced interval space Z6=(Y, I$)
that is defined as follows: for any x,y € Y, I$(z,y) = {x,y}; notice that
TI$=(Y, I°) is by construction both idempotent and convex. Notice that the
set of all Z%-unimodal total preorders is the set of all total preorders on X
with a unique maximum.

A voting rule for (N, X) with ballot domain D, is a function f : D — X
where D = I;cnY; for some (Y; : Y; C X);eny. A voter i € N is a dummy for
voting rule f iff f(y;, (2j)jenv<qiy) = f(2i, (25)jenwqay) for all y;, 2; € Y; and
all (zj)jen-q} € ILjen—i3Y;. We denote by Dy C N the subset of dummy
voters for voting rule f. A voting rule is trivial if Dy = N, and dummy-free
if Dy = @. For all z € f[D], we also posit

S CN: ify; =z for each i € S and

Wi = y; # x foreach j € N\ §

then f((yi)ien) =

W/ denotes the family of coalitions that are weakly decisive for x under
voting rule f.

Clearly, for any two distinct x,y € f[D], it must be the case that SNT #
gforall Se W[, T e WJ ie. (W, WJ ) is a transversal pair of families of
coalitions.

A voting rule f : D — X is strategy-proof on preference domain
VN C Uﬂvylff for all N-profiles (3=;)ien € V¥, and for all i € N, y; € Y;, and
(2;)jes € D such that (y;, (¥))csqiy) € D, and x; =; z; for each j € N and
each z; € Y}, f((%))jen) =i f((¥i; (zj)jen~{})) holds. Moreover, a voting
rule f is coalitionally strategy-proof on V¥ iff for all N-profiles (3=;)icn €
VN (z)jen € WienY; , S € N and (y;)ies € ILiesY; such that z; =; z;
for each j € N and each z; € Y}, there exists ¢ € S with f((x;)jen) =i
f(()ies, (z5)jenvs))-

Finally, a voting rule f : D — X with D = IL;cnY; is Zp-monotonic iff
foralli € N,y; € Yiand (z;)jen € D, f((z))jen) € Iy, (x4, f(is () jena}))-

We are now ready to state the main results of this paper. Our results rely
on the following lemma that establishes the equivalence between monotonic-
ity of a voting rule f : D — X with respect to an arbitrary profile of convex
idempotent interval spaces (Zy; );en and strategy-proofness on the correspond-
ing (full) unimodal preference domain ;cnUs,, (the first equivalence estab-



lished by that Lemma is an extension of a similar result for the interval spaces
of trees due to Danilov (1994)).

Lemma 1 LetY; C X, and Iy, = (Y;, Iy;) a convez idempotent interval space
foranyi € N, and f : D — X a two-valued voting rule with D = Il;enY;
and | X| > 3. Then, the following statements are equivalent:
(i) [ is strategy-proof on its full unimodal preference domain ;enUz, ;
(ii) f is Ip-monotonic; Z
(iii) f is Ip-monotonic and WY is an order filter of (P(N),C) for all
z € f[D].

Proof. (i) =(ii): Let f(D) = {z,y} and suppose that f : D — X is not
Ip-monotonic: thus, there exist : € N, o} € Y; , and 2y = (z;)iey € D
such that f(xn) ¢ Iy, (s, f(2], vn<})). Then, consider the total preorder
=" on Y; defined as follows: z; = top(>=*) and for all y,z € Y;~ {z;} , y =* =
fF(3) {9, 2} C Iy, (s, f(asane o)) ~ (i} or (i) y € Iy (o, S (@l o)) ~
{z:} and 2z & Iy, (i, f (2}, 2nqay)) or (i) y ¢ Iy, (2, f (25, 2y giy)) and 2 ¢
Iy, (xi, f(@}, xnqiy))- Clearly, by construction =*consists of three indifference
classes with {x;}, Iy, (i, f(2}, xnqiy)) ~ {@:} and X N Iy, (2, f(2, 2nq3y))
as top, medium and bottom indifference classes, respectively.

Now, observe that >*€ Uz, . To check that statement, take any y, z, v €
Y; such that y # 2z and v € [y (y,2) (if y = z then, by Idempotence of
Zy,, v = y = z and there is in fact nothing to prove). Also, notice that
{y, 2z} # {x;} since y # z, and assume without loss of generality that y # x;.

If {y, 2z} C Iy,(zs, f(2}, xng3y)) then, by Convexity of Zy,,

v € Iy,(z;, f(x}, 2y (). Hence, v =* y by definition of =*.

If on the contrary {y,z} N (Y; N Iy,(z;, f(2}, xn () # @ then take
w e {y. 2} 0 (Vi Iy (i S (@ o ).

Clearly, by definition of =*again, v =* w. Since w € {y, z}, it follows
that the unimodality condition is satisfied again and therefore =*€ Uz, as
claimed.

Also, by assumption f(zy) € X1y, (s, f(z}, xngiy)) while f(a], on () €
Iy, (x;, f(@}, xngy)) by Extension, whence by construction f(z}, vy (i) =
f(zn). But then, f is not strategy-proof on Il;c Uz, .

(ii) =>(i): Conversely, let f be Zp-monotonic. Now, consider any 3
j)jen € HZeNUIY and any ¢ € N. By definition of Zp- monotonlclty
o

(=) je
f(top(=i), znqiy) € Iy, (top(=:), f(xs, anwqiy)) for all zy iy € Hjen Y



and z; € Y;. But then, since clearly by definition top(=;) =; f(top(=;
), T {i}), either f(top(i=;), ey (i) = top(i=;) or f(top(=i), on(iy) =i f(76, TN {iy)
by unimodality of »=;. Hence, f(top(=:), n-}) =i f(2i, N gi)) in any case.
It follows that f is indeed strategy-proof on Il;cyUsz, .

(iii)==(ii): Trivial. L

(ii)==(iii): Indeed, suppose that f is Zp-monotonic and there exist
r € f[Djand S C T C N such that S € W/ and T ¢ W/. Hence, by
finiteness of N, there exist S with S C S C T, and ¢ € T ~ S’ such
that S € W/ and S"U {i} ¢ W{. Thus, f((z; = 2)jes, (Yj)jen-s) = T
and f((z; = x)jESu{z‘}u(yi)ieN\(Su{i}> # x hence, by Idempotence of Zy,,
f((z; = x)jesupy: (Wi)ienwsugy) € Ivi(@, f((z; = 2)jes, (yj)jen~s), which
contradicts Zp-monotonicity of f. m

We are now ready to state our characterization results.

Theorem 2 Let f : D — X be a two-valued voting rule with |X| >
3, I%:(Y;,I%) the clique-induced interval spaces on Y;, 1 = 1,...,n, and
HieNUI% C D ClIl,enUy,. Then, the following statements are equivalent:

(i) f s strategy-proof on preference domain D;

(ii) f is IS -monotonic;

(iti) [ is TG -monotonic and D C (f[D])">Pr x ILep,Y;.

Proof. (i) = (ii)To begin with, notice that by construction Z¢ =(;, I, )
is indeed a convex idempotent interval space, for all ¢ € N. Moreover, f is
strategy-proof on D entails that f is in particular strategy-proof on Il;c ~nUze

and therefore -by Lemma 1 above- f is also Z§-monotonic;

(i) = (i) If f is Z&-monotonic then, by Lemma 1 it is also strategy-
proof on II;¢ NUZ%. Now, suppose that f is not strategy-proof on D i.e. there
exist (%j)jEN € 25 , (£j)jeN - D, 1 € N, Y; € Y; such that ((l’j)jeN\{i},yi) €
D, =€ Uy, such that z; »=; z for all z € X, and f((vi, (zj)jen1i})) >
f((zj)jen. Then take >=/defined as follows: z; >; y for all y € X \ {z;} and
y 7 ziffy = 2 for any y,z € ¥; \ {z;}. Thus, '€ Uz , by construction.
Since f((vi, () jenqit)) =i f((7;);jen entails that f((x;)jen # @i, it follows
that f((vi, (z;)jen~gy)) =i f((z;)jen. Therefore, f is not strategy-proof on
Ué\é , a contradiction;

(i7) = (ii) Trivial;



(i) == (4ii) Let us assume that f is Z&-monotonic and there exist a non-
dummy voter ¢ € N\ Dy and v; € Y;\{z,y} such that f((vs, (2;)jen1i})) #
f((wi, (zj)jen~qay)) for some (2;)jenqiy € Wjen~ (Y, and w; € Yi.

Let us then suppose, without loss of generality, that x = f((v;, (2;)jen) #
J((wi, ((27)jen<g})) = y: notice that, by construction, both (v, (2;)jen-{i})
and (w;, ((2j)jen~{i}) arein D. Next, consider any profile (=) jcn € jenUse

J

such that v; =; y =; x. Then, f((ws, (vj)jen-qi})) = ¥ =i * = f((vj)jen)
i.e. 4 can manipulate f at (v;);en € D, namely f is not strategy-proof on D
hence by the first part of this proof it is not Z&-monotonic, a contradiction.
|

As an immediate consequence of Lemma 1 and Theorem 2 we have the
following corollaries:

Corollary 3 Let f:D — X be a dummy-free two-valued voting rule with
| X| > 3, I%:(Yi,.f%) the clique-induced interval spaces on Y;, i = 1,....n,
and I1;c NUI% C D ClIlLienUy,. Then, the following statements are equivalent:
(i) f is s;fmtegy—proof on preference domain D ;
(ii) D = (f[D])N and W/ is an order filter of (P(N),C), for all x €
fD].

Proof. (i)=-(ii): If f is strategy proof on D and dummy-free then by Theo-
rem 2 above it follows immediately that f is Z§-monotonic and D C (f[D])V.
Also, since |f(D)| = 2 dummy-freeness of f also entails that D = (f[D])".
Moreover, it follows from Lemma 1 above that W/ is an order filter of
(P(N), Q) for all z € f[D].

(ii) =(i): Suppose that D = (f[D])Y and W/ is an order filter of
(P(N),CQ), for all # € f[D]. Then, f is Z&-monotonic: indeed, suppose
it is not. Then there exist u,v € f[D| = {x,y}, i € N and (2j)jen-qi} €
(f[DDN\{j} such that f(u7 (Zj)jeN\{i}) 52 [C(u’ f(U, (Zj)jGN\{i})) =

{u, f(v, (2))jenp) }-

Therefore, it must be the case that v # v and f(u, (2))jenq}) 7# v =
f(v,(2j)jen<qy) whence S ={j € N:z;=u} € W/, i ¢ S, and SU {i} ¢
W/ hence W/ is not an order filter of (P(NN), C), a contradiction. But then,
it follows from Theorem 2 above that f -being Z§-monotonic- must also be
strategy-proof on D as required. m



Corollary 4 Let f: XY — X be a two-valued voting rule with full ballot

domain, |[N| > 2, |X| > 3, I¢=(X, I®) the clique-induced interval space on

X, and Ué\[; C D CU¥. Then, f is not strategy-proof on preference domain
X

D.

Proof. Indeed, suppose f is strategy-proof on D. Then, by Theorem 2
above, XNC (f[XN))"Pr x XPr whence N\ D; = @ ie. N =Dy, a
contradiction. m

Thus, Corollary 3 entails that dummy-free nonsovereign two-valued strat-
egy proof voting rules are in a one-to-one correspondence to ordered transver-
sal pairs (WY, WJ) of order filters of the coalition poset (P(N),C), and do
essentially reduce to the class of Z¢-monotonic dummy-free and sovereign
voting rules on binary outcome sets. Therefore, in view of Barbera, Berga,
Moreno (2010) and Vannucci (2012), they are also coalitionally strategy-
proof. In particular, they include simple majority-based voting rules, which
correspond to transversal pairs of order filters (W, WJ ) such that for any
u€ {r,yt and SC N, S e W/ if|S|>|N S|

Furthermore, Corollary 4 establishes that if |[N| > 2 and | X| > 3, then
there is no two-valued nonsovereign strategy-proof voting rule that is defined
on the full ballot domain X*. That fact is to be contrasted with the existence
of two-valued nonsovereign strategy-proof social choice functions on the full
domain of total preorders such as serial dictatorships and duple asymmetric-
veto rules (see Barbera, Berga, Moreno (2012)). The reason underlying such
remarkable difference in the behaviour of two-valued nonsovereign strategy-
proof social choice functions and voting rules may be summarized as follows:
the limited information on preferences provided by truthful strategies for
voting rules may fail to provide information about true preferences among
the eligible outcomes leaving thereby some scope for manipulation.

3 Concluding remarks

We have characterized the class of two-valued nonsovereign strategy-proof
voting rules, with a view to explore the existence issue for dummy-free rules
among them. It has been shown that two-valued nonsovereign and dummy-
free strategy-proof voting rules with ballot domains restricted to eligible out-
comes do indeed exist, and coincide essentially with dummy-free and sov-
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ereign strategy-proof voting rules on binary outcome sets. That is so because,
as it turns out, adding feasible but noneligible outcomes to the strategy space
of any nondummy voter provides scope for manipulation on the part of that
voter. In particular, due to that very same reason, two-valued nonsovereign
strategy-proof voting rules with full ballot domain do not exist.
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