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Abstract. The present note provides two conditions which are
jointly su¢ cient for a �nite family of uniquely topped total pre-
orders on a �nite set to be tree-wise single peaked - even when it
is not line-wise single peaked. One of the two conditions is also a
necessary one.
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1. Introduction

It can be quite easily shown that -as a corollary of well-established
results- the core of the majority-induced dominance relation of any
(odd) pro�le of single peaked linear orders on a tree includes the out-
come of the sincere strategy pro�le, and the latter is in particular both
a dominant strategy equilibrium and a strong Nash equilibrium. Thus,
single peaked domains on an arbitrary tree are a coalitionally strategy-
proof domain for the majority rule: on such domains the existence of
an outcome that satis�es the Condorcet stability criterion in a remark-
ably robust manner is warranted (see e.g. Danilov (1994), Vannucci
(2016), building on the seminal Moulin (1980), and Demange (1982)).
Other remarkable stategy-proofness properties of probabilistic social

choice rules on single peaked domains have also been pointed out (see
e.g. Ehlers, Peters and Storcken (2002), Peters, Roy, Sen and Storcken
(2014), concerning single peaked domains on lines, and Chatterji, Sen
and Zeng (2016) for single peaked domains on trees).
However, while a rich literature concerning the specialized case of

single peaked domains on lines is available (ranging from early work
as aptly summarized in Fishburn (1973) to some recent and much
more general contributions on stricly related matters such as Danilov
and Koshevoy (2013) and Puppe (2014)), little is apparently known
-comparatively speaking- about single peaked domains on arbitrary
trees.
Consider for instance the most basic version of the relevant identi-

�cation problem, namely �nding su¢ cient conditions for an arbitrary
domain of total preorders with unique maxima to be tree-wise sin-
gle peaked. Its specialized version for the �degenerate�-tree case of
lines/chains has a simple and well-known solution: each triple of ele-
ments of the ground set should include an element which is never the
minimum of the triple according to some preorder of the domain (more-
over, such condition is both su¢ cient and necessary).
But what if a certain domain is clearly not line-wise single peaked?
Thus, we have the following version of the basic identi�cation prob-

lem concerning tree-wise single peaked domains.

Problem Let X be a non-empty �nite set, N = f1; :::; ng and DX =
f<1; :::;<ng a set of total preorders on X with unique maxima. Find
out conditions on DX that:
(i) are su¢ cient for DX to be a tree-wise single peaked domain i.e.

for the existence of a tree T (X) with X as its node-set such that each
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<i2 DX is single peaked with respect to the betweenness relation of
T (X), and
(ii): work even if DX is not line-wise single peaked.

It should be emphasized that such a problem has a most signi�cant
�practical�dimension, whenever DX amounts to the set of admissible
�voting strategies�represented in a ballot, under any decision protocol
which -like e.g., majority-based rules- is strategy-proof on single peaked
domains but not on certain larger domains. In such a case, if DX is
single peaked then it may be plausibly regarded as reliable information
about the true preferences of the relevant voters, but not otherwise.
Nevertheless, to the best of the author�s knowledge, the foregoing

Problem has never been addressed in the extant literature. The present
note provides a solution to it consisting of a pair of conditions which
are jointly su¢ cient for a domain to be tree-wise single peaked. In
particular, one of those conditions is also a necessary one. The present
note relies on some previous work concerning betweenness relations
on trees, mainly Sholander (1952)) and Chvátal, Rautenbach, Schäfer
(2011).

2. Model and result

Let X, N be �nite sets, TX the set of all binary relations <� X2

which are topped i.e. with a unique maximum top(<) 2 X. Moreover,
let bTX � TX be the set of all transitive binary relations on X having
a unique maximum, and T �X the set of all total preorders on X hav-
ing a unique maximum. The following notation will be used: for any
<i2 TX , �iand �idenote respectively the asymmetric and symmetric
components of <i; for any DX = f<1; :::;<ng � TX and any x 2 X,
N(DX) = f1; :::; ng, N = Nx(DX) = fi 2 f1; :::; ng : top(<i) = xg, and
Top(DX) = fx 2 X : there exists <i2 DX with top(<i) = xg.
A ternary relation B � X3 is a (interval space) betweenness on X

if and only if for any x; y; z 2 X the following two conditions hold:
(B0): for each x; y; z 2 X; (x; y; z) 2 B whenever y 2 fx; zg,
(B1): for each x; y; z 2 X, if (x; y; z) 2 B then (z; y; x) 2 B.

A topped<i 2 TX is single peaked with respect to betweenness
relation B � X3 if for each i 2 N and any x; y; z 2 X, x = top(<i)
and (x; y; z) 2 B entail that z �i y does not hold. A domain DX � TX
is single peaked if there exists a (interval space) betweenness relation
B � X3 such that every <i 2 DX is single peaked with respect to B.
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De�nition 1. (Tree Betweenness) A ternary relation B � X3 is a
Tree Betweenness if and only if it satis�es the following independent
conditions (see Chvátal, Rautenbach, Schäfer (2011)), Corollary 5 for
a justi�cation of the present de�nition):
(B1): for each x; y; z 2 X, if (x; y; z) 2 B then (z; y; x) 2 B;
(B2): for each x; y; z; w 2 X; if (x; y; z) 2 B; (y; z; w) 2 B and y 6= z

then (x; z; w) 2 B;
(B3): for each x; y; z; w 2 X; if (x; y; z) 2 B and (x; z; w) 2 B then

(y; z; w) 2 B;
(B4): for each x; y; z 2 X; if B \ f(x; y; z); (y; z; x); (z; x; y)g = ?

then there exists u 2 X n fxg such that (x; u; y) 2 B and (x; u; z) 2 B;
(B5): for each x; y; z 2 X; (x; y; z) 2 B and (y; x; z) 2 B if and only

if x = y:

Remark 1. Notice that a Tree Betweenness does also satisfy B0
hence it is a special instance of a (interval space) betweenness as de�ned
above. To check this claim, consider any x; y; z 2 X; (x; y; z) 2 B such
that y 2 fx; zg. Then, either x = y, or z = y. In the �rst case,
(x; y; z) 2 B by B5. In the second case, (z; y; x) 2 B by B5 whence
(x; y; z) 2 B by B1. Moreover, consider any partial order � on X.
The �canonical�order-betweenness relation B� � X3 is de�ned in the
obvious way, namely
B� := f(x; y; z) 2 X3: x � y � z or z � y � x, or y 2 fx; zgg.
It is quite easy -and left to the reader- to check that if � is a linear

order then B� (a Line Betweenness, by de�nition) does satisfy prop-
erties B1�B5 i.e. it is indeed a special instance of a Tree Betweenness.

De�nition 2. (Tree-wise Single Peaked domains) A �nite do-
main DX = f<1; :::;<ng � TX is is Tree-wise Single Peaked (TSP)
if there exists a Tree Betweenness B � X3 such every <i2 DX is single
peaked with respect to B.

Let us now consider the following two conditions on a domain DX �
TX :

Compromise Availability for Triplets (CAT): for any x; y; z 2
Top(DX), if there exist ix; iy; iz 2 N(DX) such that
x = min(<ix) fx; y; zg, y = min(<iy) fx; y; zg and z = min(<iz

) fx; y; zg, then for some u 6= x both u 6= min(<i) fx; u; yg and u 6=
min(<i) fx; u; zg hold for each i 2 N(DX).
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Consistency of Local Unanimity on Minima (CLUM): for any
x; y; z; w 2 Top(DX),

if y 6= min(<i) fx; y; zg and z 6= min(<i) fx; z; wg for each i 2
N(DX), then z 6= min(<i) fy; z; wg for each i 2 N(DX).

Example. TakeX = fx; y; z; ug and consider domainDX = f<1;<2;<3g �
T �X such that:

x �1 u �1 y �1 z
y �2 z �2 u �2 x
z �3 u �3 x �3 y.

It is easily checked that (<1;<2;<3) satis�es CAT, by construction.
Moreover, it also trivially satis�es CLUM since Top(f<1;<2;<3g)k =
fx; y; zg.
However, it can be easily shown that -due to its �disconnected�triplet

x; y; z- there is no linear order � on X such that f<1;<2;<3g is line-
wise single peaked with respect to order-betweenness B�. Thus CAT
and CLUMmay indeed jointly hold for domains which are not line-wise
single peaked.

Theorem 1. (i) Let domain DX � T �X satisfy CAT and CLUM. Then,
DX is a TSP domain.
(ii) Moreover, if DX is a TSP domain then it satis�es CAT.

Proof. Part (i):
Let us de�ne a ternary relation B(DX) � X3 as follows: for any

x; y; z 2 X,
(x; y; z) 2 B(DX) if and only if fx; zg � Top(DX) and either
(�) y 2 fx; zg or
(�) y 6= min(<i) fx; y; zg for all i 2 N(DX).
To begin with, notice that DX is indeed a single peaked domain with

respect to B(<N).
Indeed, let (x; y; z) 2 B(DX). Then, fx; zg � Top(DX) and either

y 2 fx; zg or y 6= min(<i) fx; y; zg for all i 2 N(DX). Suppose �rst
that y 2 fx; zg and i 2 Nx(DX) i.e. top(<i) = x: then, y �i z if y =
x 6= z and y �i z otherwise. Suppose now that y 6= min(<i) fx; y; zg
i.e. either y <i x or y <i z for all i 2 N(DX) (and not x = y = z).
Then, consider any i 2 Nx(DX): either y = x, whence y �i z or y 6= x
whence y <i z, and single peakedness of <N holds.
We claim that B(DX) does indeed satisfy properties Bi, i = 1; :::; 5.

B1: Immediate. Indeed, suppose that (x; y; z) 2 B(DX): then
fx; zg � Top(DX) and either y 2 fx; zg or y 6= min(<i) fx; y; zg for
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all i 2 N . In both cases (z; y; x) 2 B(DX) by the very de�nition of
B(DX).

B2: Suppose that x; y; z; w 2 X, y 6= z, (x; y; z) 2 B(DX)
and (y; z; w) 2 B(DX). In view of B(DX)�s de�nition we have to
distinguish four cases corresponding to the possible combinations of
clauses, namely:
(a) y 2 fx; zg and z 2 fy; wg. Then, since y 6= z, y = x and either

z = y or z = w. Hence either case z 2 fx;wg hence (x; z; w) 2 B(DX)
by de�nition of B(DX), clause (�).
(b) y 2 fx; zg and z 6= min(<i) fy; z; wg for all i 2 N(DX). Since

y 6= z it follows that y = x. Thus z 6= min(<i) fx; z; wg for all i 2
N(DX), whence (x; z; w) 2 B(DX) by de�nition of B(DX), clause (�).
(c) y 6= min(<i) fx; y; zg for all i 2 N(DX) and z 2 fy; wg. Again,

it must be the case that z = w, since y 6= z. Thus, z 2 fx;wg hence
(x; z; w) 2 B(DX) by de�nition of B(DX), clause (�).
(d) y 6= min(<i) fx; y; zg and z 6= min(<i) fy; z; wg for all i 2

N(DX). Suppose then that there exists j 2 N(DX) such that z =
min(<j) fx; z; wg i.e. without loss of generality both x �j z and w �j z
(indeed, if z 2 fx;wg then again (x; z; w) 2 B(DX) by de�nition of
B(DX), clause (�)). But w �j z and z 6= min(<i) fy; z; wg for all
i 2 N(DX) with y 6= z entail z �j y. However, y 6= min(<j) fx; y; zg
by hypothesis, hence y �j x. Since x �j z by hypothesis, it fol-
lows -by transitivity- that y �j z, a contradiction. Therefore, again,
z 6= min(<i) fx; z; wg for all i 2 N(DX), whence (x; z; w) 2 B(DX) by
de�nition of B(DX), clause (�). As a consequence B2 holds.

B3: Suppose that (x; y; z) 2 B(DX) and (x; z; w) 2 B(DX).
We claim that (y; z; w) 2 B(DX) as well. To check this, we distinguish
again the four possible cases, namely:
(a) y 2 fx; zg and z 2 fx;wg. Then, if y = x then both z = x

and z = w entail z 2 fy; wg whence (y; z; w) 2 B(DX) by clause (�).
Otherwise, y = z hence again z 2 fy; wg and (y; z; w) 2 B(DX) by
clause (�).
(b) y 2 fx; zg and z 6= min(<i) fx; z; wg for all i 2 N(DX). If y = x

then z 6= min(<i) fy; z; wg for all i 2 N(DX) hence (y; z; w) 2 B(<N)
by clause (�). If y = z then z 2 fy; wg and (y; z; w) 2 B(DX) by
clause (�).
(c) y 6= min(<i) fx; y; zg for all i 2 N(DX) and z 2 fx;wg. If

z = x then y �i x = z for each i 2 N(DX): a contradiction, by
hypothesis, fx; zg � Top(DX). Therefore, z = w whence z 2 fy; wg
and (y; z; w) 2 B(DX) by clause (�) again.
(d) y 6= min(<i) fx; y; zg and z 6= min(<i) fx; z; wg for all i 2

N(DX). Then, by property CLUM of domainDX , z 6= min(<i) fy; z; wg
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for each i 2 N(DX) hence (y; z; w) 2 B(DX) by clause (�). It follows
that B3 holds.

B4: Let x; y; z 2 X be such that
B(DX) \ f(x; y; z); (y; z; x); (z; x; y)g = ?. Then, by de�nition of

B(DX), x 6= y 6= z 6= x and there exist ix; iy; iz 2 N(DX) such that x =
min(<ix) fx; y; zg, y = min(<iy) fx; y; zg and z = min(<iz) fx; z; wg.
Hence, by property CAT of domain DX , there exists u 6= x such that
both u 6= min(<i) fx; u; yg and u 6= min(<i) fx; u; zg hold for each
i 2 N(DX). But then, both (x; u; y) 2 B(DX) and (x; u; z) 2 B(DX)
by clause (�), and B4 is also satis�ed.

B5: =) Suppose that both (x; y; z) 2 B(DX) and (y; x; z) 2
B(DX). Again, by de�nition of B(DX), fx; y; zg � Top(DX) and there
are of course four distinct cases to consider, namely:
(a) y 2 fx; zg and x 2 fy; zg. If x = y there is nothing to prove, and

if y = z and x = z then of course x = y.
(b) y 2 fx; zg and x 6= min(<i) fx; y; zg for all i 2 N(DX). Suppose

y = z. Then, x �i y = z for all i 2 N(DX), a contradiction since
fy; zg � Top(DX). Thus, y = x as required.
(c) y 6= min(<i) fx; y; zg for all i 2 N(DX) and x 2 fy; zg. Suppose

x = z. Then, y �i x = z for all i 2 N(DX), a contradiction since
fx; zg � Top(DX). Hence x = y, again.
(d) y 6= min(<i) fx; y; zg and x 6= min(<i) fx; y; zg for all i 2

N(DX). In this case, z = min(<i) fx; z; wg for all i 2 N(DX), a
contradiction since by hypothesis z 2 Top(DX). It follows that x = y
as required.

(= Suppose x = y. Then, of course, x 2 fy; zg and y 2 fx; zg
whence both (x; y; z) 2 B(DX) and (y; x; z) 2 B(DX) by de�nition of
B(DX), clause (�).
Therefore, B(DX) satis�es property B1 � B5, hence it is indeed a

tree betweenness. It follows that DX is a TSP pro�le as required.
Part (ii):
SupposeDX i.e. there exists a tree betweenness B such that any <i2

DX is single peaked with respect to B. Now, consider any x; y; z 2 X.
Since B satis�es property B4, it must be the case that at least one of
the following conditions holds true: (�) (x; y; z) 2 B; (�) (x; y; z) =2 B
and (y; z; x) 2 B; (
) (x; y; z) =2 B and (z; x; y) 2 B;
(�) B \ f(x; y; z); (y; z; x); (z; x; y)g = ? and there exists u 2 X,

u 6= x such that both (x; u; y) 2 B and (x; u; z) 2 B. Next, sup-
pose that DX violates CAT. Then, there exist a triplet x0; y0; z0 2 X
such that fx0; y0; z0g � Top(DX), and ix

0
; iy

0
; iz

0 2 N(DX) such that
x0 = min(<ix0 ) fx0; y0; z0g, y0 = min(<iy0 ) fx0; y0; z0g and z0 = min(<iz0
) fx0; y0; z0g, and for every u 6= x0 both u = min(<i) fx0; u0; yg and
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u = min(<j) fx0; u; z0g hold for some i; j 2 N(DX). As observed above,
(x0; y0; z0) must satisfy at least one of conditions (�); (�); (
); (�). But,
as it is easily checked, if any one of such conditions holds for triplet
(x0; y0; z0) it follows that DX is not TSP, a contradiction. �

Remark 2. It should be noticed that CAT and CLUM are mutually
independent. To check the validity of this statement, consider the
following two pro�les of topped total preorders on X:
(i) (<1;<2;<3) where <i; i = 1; 2; 3 are such that, for all a; b 2

X n fx; y; zg:
x �1 y �1 z �1 a �1 b,
y �2 z �2 x �2 a �2 b,
z �3 x �3 y �3 a �3 b.

Clearly, by construction, f<1;<2;<3g satis�es CLUM but violates
CAT.
(ii) (<1;<2) where <1=<2=< and < such that w � y � z � x �

a � b for all a; b 2 X n fx; y; z; wg. It is easily checked that (<1;<2)
satis�es CAT but violates CLUM.

It would be interesting to �nd necessary and su¢ cient conditions
for DX � T �X to be a TSP domain, and su¢ cient and/or necessary
conditions forDX to be TSP withDX � bTX andDX � TX respectively.
Those issues however are beyond the scope of the present note, and are
left as a topic for further research.
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