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Abstract - The paper defines a consensus distribution with respect to experts’ opinions by a multiple
guantile utility model. The paper points out that the Steiner Point is the representative consensus probability.

The new rule of experts’ opinions aggregation, that can be evaluated by the Shapley value in a simple way,
is prudential and coherent.
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1 Introduction

In the last decades it has been observed a new interest for aggregation of conflict-
ing and not necessarily independent opinions of experts and scientists when the
decision maker (DM) faces ambiguity. Examples of ambiguous events in which
estimations are derived from empirical frequencies that induce not fully reliable
and unique assessment among experts are: the severity of the global warming
following a doubling of atmospheric COs concentration, with respect to prein-
dustrial levels, the relationship between biodiversity loss-environmental services
change, and transmission of re-emerging infectious diseases, the environmental
safety and direct effects on human health of genetically modified organisms, the
morbidity and mortality of a pandemic flu in human beings.

Because of difficulties and failure of the frequency theory respect incomplete,
sparse or unavailable data, the Bayesian theory emerged as the normative theory
able to solve the problem of opinions aggregation. In the Bayesian context, the
concept of opinion, that encompasses different notions such as: prior, vague
prior, sequence of odds ratios, finitely additive measures finds a natural encode
in a subjective probability distribution.!

Nevertheless, in Bayesian axiomatic approach to consensus distribution there
is no room for ambiguity, but ambiguity attitude, that emerges when individ-
uals face vague and incomplete statistical data, influences perception of risky
events and induces human beings to elicit probabilities and apply decision rules
that violate the standard rationality paradigm. Recently, a stream of processes
involving both modeling and behavioral aspects has been proposed to calibrate
the aggregation-combination-composition of experts’ opinion through the DM’s
ambiguity attitude. These methods differ from Bayesian pooling operators used
to form a single consensus distribution and can be included in three main classes:
(i) pooling methods based on Dempster’s rule of combination or theory of evi-
dence (Stephanou and Lu 1988; Bi et al. 2007; HaDuong 2008; Denoeux 2008);
(ii) combination rules based on possibility distributions and fuzzy measures
(Sandri et al. 1993; Dubois and Prade 1994 ; Yu 1997); (iii) methods of aggre-
gation based on multiple priors or capacity (Gajdos and Vergnaud 2012, Cres
et al. 2011).2

We consider aggregation scheme of opinions expressed through different
probability distributions and a DM that adopts a multiple priors decision model.

1'Whether opinions are expressed as probability measures, densities, mass functions, odds
then subjective probability distributions are used to form a consensus distribution through:
linear opinion pools (Stone 1961), linear opinion pools, that only satisfies the marginalization
property, (DeGroot and Montera 1991), logarithmic opinion pools, that satisfies the external
Baysianity (Winkler 1968), generalized logarithmic opinion pools (Genest et al. 1986), that
is using mathematical aggregation models.

2Gajdos and Vergnaud (2012) characterize preferences that exhibit independently aversion
towards imprecision and conflict, axiomatically. They aggregate different evaluations through
a multiple weights model where "a decision maker will satisfy the conflict aversion hypothesis
whenever her degree of conflict aversion is higher than her degree of imprecision aversion".
Cres at al. (2011) focus on the maxmin expected utility model so that "the decision maker’s
valuation of an act is the minimal weighted valuation, over all weight vectors of the experts’
valuations" (a weight pessimistic scenario).



Following the standard literature, the set of probability distributions or lotteries
of all experts can be considered reflecting the DM’s assessment of the reliability
of available information about the underlying uncertainty, that is, her perception
of ambiguity, and the optimal aggregation rule incorporates the DM’s attitude
about scanty and vague information. Facing the set of all probability distribu-
tions attached by experts to possible events, the DM considers the mean value
of their common probability set, indeed the mean value of their probabilities
intersection. Such a mean value is the Steiner point of the convex capacity
that emerges from experts opinion aggregation. Section 2 introduces an aggre-
gation rule based on a quantile utility model and a DM that is supposed to
be pessimistic with respect to extreme negative outcomes (catastrophic losses),
ambiguity neutral in an interval of more reliable outcomes (familiar results)
and optimistic with respect to extreme positive outcomes (windfall gains). In
Section 8 we translate in terms of attitude toward lower tails, upper tails and
intermediate quantiles and define a less conservative criterion for eliciting a sin-
gle consensus distribution. Moreover we show that the suggested aggregation
rule preserves stochastic dominance. Concluding remarks follows.

2 Opinions Aggregation in a Multiple Quantile
Utility Model

Talking about the use of proper pooling methods to discover not only opinion of
people’s, whom the DM regards as experts; but also to judge how well informed
they are, Savage observes that "risks characterized by tiny probabilities may
be difficult to have a reliable experts’ assessment, that experts’ opinions might
be divergent, and, what is more relevant, you might discover with expert is
optimistic or pessimistic in some respect and therefore temper his judgements.
Should he suspect you of this, however, you and he may well be on the escalator
to perdition" (Savage 1971, 796). Moreover there exist some problems to the
full implementation of consensus rules in an axiomatic Bayesian approach to
the expert priors and the DM’s prior updating by a likelihood function, indeed
the arbitrariness of the pooling weights, the use of invariant combination rules,
the dependence between the DM’s information and the experts’ information, de-
pendence among experts’ probability distributions (e.g. stochastic dependence),
and calibration of experts’ opinion.?

We introduce an approach to form a consensus distribution that adopts a
quantile-function (Basili and Chateauneuf 2011). We give a representation in
a setting with a DM that has multiple priors, indeed the set of all probabil-
ity distributions of each expert on possible events, none of which is considered
fully reliable. We put in evidence a new formalization of the aggregation rule

3In empirical studies Clemen and Winkler (1986) and Figlewski and Urich (1983) found
that correlations among expert forecasts can be above 0.80.



that rests on the idea that the decision-maker has a set of outcomes called
ordinary, because they are considered more reliable (familiar or closer to her
experienced life), and two fat tails in which are included more ambiguous ex-
treme (unfamiliar) events. Differently from other possible formulations, our
new formulation appears to be less conservative and extreme: the DM is sup-
posed to be pessimistic with respect to purely catastrophic losses, ambiguity
neutral with respect to ordinary outcomes and optimistic with respect to purely
windfall gains.

2.1 Framework

We consider m experts j = 1,...,m aiming at valuing the possible probability
distributions P governing an uncertain situation S = {s1,..., 8;,...8,}, where
one state s € S will occur and only one, but where it is assumed that there is a
unique unknown probability distribution Py governing that situation. Formally,
S is the finite set of states of the world and 2° is the set of all subset of S. Any
given expert 7, will be asked to give lower and upper bounds for the probability
pb = Py ({i}). Therefore the set of possible probabilities P; considered by expert
j will be P; = {P = (D1, s Dis ooy D) 5 ag <p; < bg, i=1, ,n}

We indeed assume 0 < aj < bj <1

It is straightforward that P; # @ if and only if Zaj <1< ij 1]

As proved in Chateauneuf and Cornet (2012), it turns that as soon as Pj #
@, then P; is the the core C(v;) of a convex capacity v; which turns out to be
defined easily, namely:

VA €25 vj(A) = Max (Za{, 1- Zb{)
icA i¢gA

Due to fiability of experts, even if they do not know Py they should envision

a set P;, such that Py € P;. Therefore one should expect that NP; # @.
J

So a first test to validate the quality (competence and reliability) of the panel

of experts should be to check that NP; # @.
J

From [1], it is immediate that NP; # & is equivalent to Zai <1< Zbi’
J - -
K3 (]
where: a; = M aq:aj b; = mlnb] and indeed a; < b; Vi.
Once these conditions have been checked or, if NP; = @, the experts have

been asked to revise their opinion by enlarging their considered initial P;, in
order to satisfy the consistency requirement NP; # &, one could summarize the
J

consensus opinion P = NP; through a convex capapcity? v with the known
J

formula v(A) = Max (Zai, 1- Zbl>

icA i¢A

4A capacity v is convex if v(AU B) +v(AN B) > v(A) +v(B),VA, B € 25



In other words this convex capacity v will be now considered as the aggre-
gation of the multiple prior opinions.

2.2 Multiple Quantile Utility Model

We now suggest to use the multiple quantile utility model (as considered in
Basili and Chateauneuf 2011) with respect to the previous convex capacity. In
this way we show that the Steiner point IV € C(v) can be considered as the
representative probability of the consensus experts’ opinions.

As a matter of fact the Steiner point? is defined as the center of C(v), so as a
meaningful probability summarizing the consensus experts’ opinions. Moreover
it turns out that for convex capacities the Steiner point is nothing else that the
famous Shapley value, the computation of which is very easy.

Let us recall (i.e. Owen 1968) that Shapley’s 15" (i.e. 11" = I1?) is defined
by:

vielln] I = 7 LSRR ((4) - o(A\ {i})

n!
{i}CACS

Example 1 Computation of the Shapley value for the following ’probability-
interval’ capacity v

S = S1 S2  S3

b, = 16 % 11 therefore v is given by
A

i 12 12 12

A {s1} {s2} {s3} {s1, 52} {s1s3} {5283} S
v(d) 2 3 4 5 7 k2 12

12 12 12 12 12 12 12
therefore

9 _ 1 2 | 1.(5=347—4) , 2.(12-7)\ _ 19
Iy =542z + 12 + =53 =72

9 _ 1 3, 1.(5—247-3) , 2.(12-5) | _ 27
II; =35 {2'12 + 12 + =53 =72

9 1 4, L(7—247—4) | 2.(12-7) | _ 26
I3 =35 {2'12 + 12 + =53 =72

Y9 _ (19 27 26

hence IIj = (55, 25, %5 )-

3 A coherent prudential aggregation rule of ex-
perts opinions

According to assumption, the DM’s ambiguity attitude is modeled through a
convex capacity v. For an act X : S — R and (o, 8) € [0, 1]2 ,a < 3, such that
[cr, B] determines the interval of cumulative probability between which outcomes
can be considered as ordinary, the DM values outcomes in [a, §] in an ambiguity
neutral way by IIY. With respect to ambiguity attitude on extreme outcomes,

5Details are in Schneider 1971 and 1993.
6Details are in Gajdos et al 2008.



we propose a prudential aggregation rule: namely one that assumes pessimism
on lower tail [0, a] and optimism on the upper tail 53, 1].

For any act, it is defined the common pseudo-inverse F'y ! indeed the quantile-
function.”

As a result, the DM chooses «, 3 € [0,1], where a < 8, and computes
the value of X € R® through I(X) = I1(X) + I5(X) + I3(X), where, defined

U the conjugate of v®: I1(X) = [ FY ' (p)dp; L(X) = ff F)I(Iﬁil(p)dp and

_—1
I(X) = [; FY (p)dp.

Once the probability distribution 1" = II¥ € core(v) has been selected, it
is possible to define the DM pessimism with respect to outcomes in the lower tail
and optimism with respect to outcomes in the upper tail. In fact, pessimism and
optimism are defined with respect to the probability distribution that expresses
ambiguity neutrality, i.e. IIV.

Definition 1 The DM is pessimistic with respect to the lower tail if she overes-
timates losses and underestimates gains in this tail with respect to the probability

7 € C(v), ice., if L(X) < [SFT (p)dp.

Definition 2 The DM is optimistic with respect to the upper tail if she underes-
timates losses and overestimates gains in this tail with respect to the probability

I € C(v), iie., if I(X)) > [ FE (p)dp.

Proposition 1 Under the prudential rule, the DM is pessimistic with respect
to the lower tail and optimistic with respect to the upper tail.

Interesting enough, this rule could be particularly useful to describe poten-
tial global temperatures rise and climate sensitivity after recent evidence that
five year mean global temperature has been flated for a decade. In case this rule
appears as prudential or cautious in the sense that estimations for high tem-
peratutes would be overvaluated while estimations for low temperatutes would
give lower values than the consensus one’s.

Stochastic dominance provides a powerful method for act analysis since it
does not require assumptions concerning the shape of the probability function
or utility function and utilizes every point in the set of probability distributions.

Furthermore it is known that under risk one of the rare rules upon which
decision theorists agree, is the respect of first order stochastic dominance. So
we introducethe following definition.

Definition 3 A rule I : R® — R is said to be coherent with the probabilistic
information 9 if given X,Y € F, X first order stochastically dominates Y for
any probability P € C(v) i.e. if P(X >t) > P(Y >t) VteR and VP € C(v)
implies I(X) > I(Y).

"Details are in Basili and Chateauneuf 2011.
8The dual or conjugate capacity T is defined by T(A) = 1 — v(AC) VA € 25.
9 Proposition 1 is a direct consequence of Proposition 3 in Basili and Chateauncuf 2011.



Proposition 2 The prudential rule is coherent.
Proof. Let X,Y € F such that X first order stochastically dominates Y for
any probability P € C(v). Let us first show that I;(X) > I;(Y). Recall that

for p € 0,1, F2 ' (p) = inf{t ER,1—9(X > 1) zp} and F2(t) = 9(X <
t)=1-9(X >1t) vt € R. Take P € C(v) then P(X > 1) > P(Y > 1) so
min P(X >¢) > min P(Y >t). Since ¢ is convex hence exact this implies
PeC(v) PEC(v)
9(X > t) > I(Y > t) hence FY(t) < FZ(t) and therefore F}Zil(p) > F{ffl(p),
Vp € [0, ] which gives I1(X) > I, (Y).
Similar proofs apply for Iy and I3 which completes the proof =

4 Concluding remarks

We developed a new approach to form a consensus distribution by considering
the composite inverse cumulative function. We put in evidence that a rational
DM would aggregate experts’ probability distributions in a functional that com-
bines her different attitude with respect to likely and extreme events. The new
functional allows to represent ambiguity attitude about experts competence on
uncertain events under scrutiny. The functional form overcomes misevaluation
induced by cognitive insensitivity to small probability outcomes. Finally, our
prudential rule preserves stochastic dominance.
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