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Abstract - We consider an aggregation scheme of opinions expressed through different probability
distributions or multiple priors decision model. The decision-maker adopts entropy maximization as a
measure of risk diversification and a rational form of prudence for valuing uncertain outcomes.

We show a new aggregation rule formalization based on the idea that the decision-maker has a more reliable
set of outcomes called ordinary and two fat tails that include more ambiguous and extreme events.
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1 Introduction

It is challenging to determine the probability distributions of decisive problems
that affect human life, such as: climate change for future emission concentra-
tions, prediction of weather statistics, hazards of GMO, re-emerging of infectious
diseases, occurrence of pandemic flu etc.. It requires synthesis and assessment
of uncertainty represented by experts’ opinions about "the correctness of un-
derlying data, models or analyses...or confidence about statistical analysis of a
body of evidence (e.g. observations or model results)" (IPCC 2007).

The assessment of the likelihood of such occurrence has largely defied quan-
tification due to insufficient data, limited ability to model the underlying processes
and a vague knowledge Moreover when the experts’ opinions are represented
through probability distributions, such distributions could not be all indepen-
dent and equally likely. In these scenarios, characterized by ambiguity and
stochastically dependent experts’ opinions, the Bayesian axiomatic approach to
consensus distribution does not appear satisfying, not even in the sophisticated
version of copula models, and scientists often resort to formal elicitation pro-
tocols. The elicitation protocols, because of interaction (sharing assessment)
among experts (e.g. Delphy, Nominal Group Technique, Kaplan’s approach),
suffer from many problems such as polarization (Plous 1993), strategic manipu-
lation, overconfidence, self-censorship, pressure to conformity, and more extreme
probability estimates (Cooke 1991) in order to generate some kind of consen-
sus distribution'. Moreover the behavioral combination approaches involve the
experts’ risk perception.? Risk perception is a specific concept different from
expected return, that is concerned with evaluation rules and attractiveness, and
that involves evaluation and attitude (relative and absolute) toward risk. Risk
perception is a subjective multidimensional notion that encompasses interpre-
tation (awareness, knowledge, information, familiarity, dread, etc.), likelihood
of probability, and appraisement of possible consequences of feasible options.

The entropy and cross entropy methods are often used in Decision Theory
and Statitics to elicit optimal probability distributions or combine them opti-
mally. In economics an economic system is often considered like a physic system?
and the entropy maximization is consequently seen as a principle of optimality.*
We assume that the decision-maker (DM, henceforth) has a prudential attitude
about uncertain experts’ opinions. Facing the set of all probability distributions

1 Formal elicitation protocols and methods have been developed to assess subjective proba-
bilities of experts in different fields, e. g. the response of the climate system to future changes
in radiative forcing (Zickfeld et al 2010) or the prospect of triggering major changes in the
climate system (Kriegler et al 2009).

2 A review of classifier combination methods and major advancements in this field can be
found in Tulyakov et al 2008.

3See Mirowsky (1989), Tsallis et al (2003), Grunwald and Dawid (2004).

4In a recent paper Foley (2002) put in evidence that applying the methods of statistical
mechanics to the standard economic model of pure exchange; "whereas the maximum entropy
exchange equilibrium is the most probable Pareto-efficient, individually utility improving state
of an exchange economy, Walrasian competitive equilibrium turns out to have a vanishingly
small probability. Thus if we observe Walrasian competitive equilibrium, there must be very
powerful forces sustaining it as an allocation".



assigned by experts to possible events, the DM adopts the entropy maximization
principle as a rule of inference when the information is ambiguous and scanty.’?
As a result the DM focuses on the particular probability distribution 7; that
maximizes the entropy. The elicited probability 7; is the closest to uniformity
and the two tails, derived by assuming pessimism on catastrophic events and
optimism on extremely positive events, originates the consensus distribution.

The paper is organized as follows: Section 2 provides a discussion of some re-
lated literature; Section 3 presents our model and introduces a new aggregation
rule; Section 4 includes some concluding remarks.

2 Related Literature

There exist some problems to the full implementation of consensus rules in an
axiomatic Bayesian approach to the expert priors and the DM’s prior updating
by a likelihood function, indeed the arbitrariness of the pooling weights, the use
of invariant combination rules, the dependence between the DM’s information
and the experts’ information, the dependence among experts’ probability distri-
butions (e.g. stochastic dependence), and the calibration of experts’ opinion.°
The maximum entropy approach is known as a method to aggregate a set
of opinions expressed through probability distribution functions, into a single
one. Crucially, a probability distribution with higher entropy has a greater mul-
tiplicity and it is more capable of realization in Nature, that is more likely to
occurr (Jaynes 1982). There are some axiomatized aggregation formulas based
on the maximum entropy inference such as Levy and Delic (1994) and Miung
et al. (1996). These formulas describe the combination of two or more experts’
opinions in a single calibrated distribution. The calibration or competence mea-
sure reflects the quality of an expert’s prediction. The competence measure is
expressed by a real valued function that is a monotonically increasing func-
tion from 0 to 1, the absolute distance or quadratic absolute distance between
the predicted event and the expert prediction. More complex it does appear
to include pairwise interaction among experts because they share information
sources, education backgrounds, theoretical dispositions, common training and
experience. Levy and Delic and Miung et al. express statistical pairwise de-
pendence (covariance) introducing correlation among experts’ opinions in the
constraints. With the exception of trivial cases of full and null dependence,
the constrained problem of entropy maximization does not admit a closed form
solution but requires the application of numerical methods to find the solution

®The maximization of entropy implies diversification, the simplest strategy of risk manage-
ment. In fact it is well known that diversification, as opposed to concentration, is an efficient
way to reduce likely loss, indeed it would induce a smaller loss with respect to a concentrative
choice (DeMiguel et al 2009, Huang 2010 and Boyle et al 2012).

6In empirical studies Clemen and Winkler (1986) and Figlewski and Urich (1983) found
that correlations among expert forecasts can be above 0.80.



such as Darroch and Ratcliff (1972), that introduced an iterative proportional
fitting procedure, or Agmon et al. (1979) that proposed an efficient algorithm.

3 Entropy Maximization in a Quantile Utility
Model

Our approach is meant to make a consensus distribution that adopts a quantile-
function (Basili and Chateauneuf 2011). This is our setting: a DM has multiple
priors, the set of all probability distributions of each expert on possible events,
none of which is considered fully reliable. The set of probability distributions
of all experts can be considered to reflect the DM’s assessment of the reliability
of the available information about the underlying uncertainty, that is her per-
ception of ambiguity, and the suggested aggregation rule incorporates the DM’s
attitude about scanty and vague information.”

Facing the set of all experts’ probability distributions about possible events,
the DM focuses on the particular probability(ies) that maximizes the entropy,
the s — closest to uniformity probability distribution. Differently from other
possible formulations, our new one appears to be less conservative and extreme:
the DM is supposed to be pessimistic with respect to purely catastrophic losses,
ambiguity neutral with respect to ordinary outcomes and optimistic with respect
to purely windfall gains.®

So for any given act X;—1,. ., € F and (ao, By) € [0, 1]2 ,ap < B, such that
it determines an interval of cumulative probability between which outcomes can
be considered ordinary, we assume that the DM values these outcomes between
these two quantiles in an ambiguity neutral way by ;.

3.1 Set Up

Let S be the set of states of the world, A a o-algebra of events in S and
(m)j=1,..~n a class of probability measures on (5,.4).” Let Xi,..., X,, be a set
of real random variables (rrv) with numerable support, technically X;—1 _,, is
an act, such that X;— ., : S —R.

Definition 1 The measure v is a capacity on (S, A) ifv: Ae A — v(A) €R,
where v(@) = 0, v(S) = 1 and such that, (A, B) € A%, AC B = v(A) <v(B),
then v(A) = minm; (X, € A), VA € A.

i\

Definition 2 The dual capacity T of a capacity v is defined by T(A) = 1 —
v(AY) = maxm;(X; € A), VA € A.
0]

"Different methods of aggregation based on multiple priors or capacity are in Cres et al.
2011 and Gajdos and Vergnaud 2012.

8See Basili and Chateauneuf (2011).

9Note that A is a subset of 25 such that A = 25 if S is finite.



Definition 3 The core of a convex capacity v on A is defined by C(v) :=
{m;i:mi(A) > v(A) VA € A}.

The core of a convex capacity v includes the distributions X;—; .
respect to (7;);=1,...n. It is worth to note that v(a) and T(A) allows to take into
account globally, i.e. on all acts, the experts evaluations and thus to evaluate
the general reliability of everyone.

Consider ap, B, € ]0,1[ with ap < 1 < 3, and for any given u € [0,1], then
indicate

a(u) =a,+ (3 —ay)u and B(u) =B, + (3 — B,)u.

Let us also note that a(u) < 3 < B(u), for all u € [0,1].

Definition 4 Call T — quantile with respect to a(u) and U — quantile with
respect to B(u) the values
=inf{t:0(]—o00,t]) > a(u)} and ¢ =inf{t:T(]—00,t]) > B(u)}.

Clearly u — ¢, (resp. u — ¢./) is increasing (resp. decreasing) and ¢/, <
q. We consider the T — quantile because it makes the interval between the
quantiles wider, insofar we are coherent with a precautionary attitude (defective
approach) of the DM.

It is possible to define the relative entropy restricted to the interval [q),, ¢/]:

Definition 5 For any u € [0,1] and probability measure 7;, the relative entropy
of X;I with respect to m; is defined by
{Xze[qu qﬂ]}

Tij(w) = —n; ;(u Z’]T] i =) log(m;(X; = x))

:cE[qu;’]

— 1
where Tij (u) T log(max(2,card{xz€(q,,,q}/]:m;(X;=2)>0}))

In this setup the relative entropy 7; ;(u) represents the degree of ignorance
in term of closeness to uniform distribution, i.e. complete ignorance.

Definition 6 For any s € 10,1[ , the s — level of uniformity of the relative
entropy T; ; is defined by the real number u; ;(s) such that
u; j(s) =inf{u € [0,1] : 7, ;(u) > s}, where inf & = 1.

Interesting enough u(s), i.e. the s—level of uniformity, denotes the min u; ;(s),
that is the maximum interval of relative ignorance. The value u(s) calibrates
quantiles among all acts respect each expert, by assuming a s — level of the
relative entropy. It is worth to note that the choice of the parameter s € ]0,1]
expresses the relaibility of the experts evaluation and is related to the uniform
distribution, i.e. the distribution corresponding to full relaibility or complete
ignorance.

In other words, when the DM considers the experts predictions of very high
quality, s is choosen close to 1 and the interval [¢),, ¢//] is very narrow, on the



contrary when experts predictions are sloppy, s is choosen close to 0 and the
interval [q],, q/'] is very large. Crucially, determination of the interval [q,, ¢!/] is
endogenous and depends on reliability attached to experts opinions. Moreover
according to the assumption on the s — level of uniformity, the DM considers
the probability measure 77 hence there exists ¢* such that the distribution of X;
according to m; on the interval [}, ¢,]. If there are more than one probability
distributions that maximize entropy, then 7 is equal to their arithmetic mean.'?

From the previous developments, it turns out that the DM determines what
she conceives as the lower tail and the upper tail, through her choice of ayg, 5, s
and therefore computes the value of a rrv X;, through the Choquet integral or

J1(X;) = /Xif{xio-;(s)}dx?

J3(XZ) = /XiI{Xi>r;l(s)}d>\ 5

(X)) = B [Xil{yr (g ex <0 (o}] and
A = min; 7;, X is the dual capacity of \; ri(s) = sup{t: 1 —a(u(s)) < MX; > t)};
r; (s) =inf {t: XN(X; < t) > B(u(s))}.

Crucially the definition of the interval [ag, 8] of the cumulative probabil-
ity distribution could be related to the security integral and potential integral
ensured by each act. Security level and potential level in preferences were intro-
duced to accomodate generalized versions of expected utility theory and Allais
paradoxes (Lopes 1987, Gilboa 1988, Yaffray 1988, Cohen 1992). The inter-
val [ag, By] of the cumulative probability distribution resembles the confidence
interval, it contains all the outcomes that the DM considers more reliable (ordi-
nary outcomes) and does not rely on the assumption of symmetry or constant
shape. Confidence interval measures also the degree of variability of what the
DM considers an ordinary outcome.'!

It is possible to show that

Theorem 1 For any s and X;, X;, such that X; > X; then J(X;) > J(X;)

Proof. Let the parameter s € ]0,1[ be. It is a non-restrictive assumption to
consider the random variables X; and X; with positive values on the finite
set, the interval [¢},,q//]. In other words, there exists a natural number n > 2
such that X; = >}, @pla, and X; = >} ynla,, and so z, > yp, (x), and
(y)n are non-decreasing sequences and (Ay,) is a partition of S. By induction
on n, it is sufficient to prove the case for n = 2 and the case z; # y, for
a unique h,. When n = 2, ), # y, for a unique h, ,it is straightforward
to check that J(X;) and J(X;) are the integrals of X; and X, with respect

10There are some algorithms to determine the maximum entropy distribution, i.e. Agmon
et al (1979) and Jaffray (1995).
1 Details are in Basili and Chateauneuf 2011.



to a probability measure 7*. Note that r;(s)m} (S),T;/(S)J‘; (s) are elements
of {&1,...,Tn,Yn, }. If quantiles are different from xp, and yp,, the isotonicity
of the Choquet Integral implies that J(X;) and J(X;) are the integrals of X;
and X;. On the contrary, if z,, = 7;(s) one obtains yp, = r;(s) and Jp(X;)
=J1(X;); J2Xi) > J2(X;); J3(Xi) = J3(X;), and consequently J(X;) and
J(X;) are the integrals of X; and X;. If yp,, = r;-,(s) the proof is similar to the
previous one m

4 Concluding Remarks

In this paper we solve the problem of aggregating probability distributions of
experts for a given set of events, by a new rule based on entropy maximiza-
tion. Differently from previous models, we consider a prudent DM that facing
a set of probability distributions elicits the consensus distribution by explicitly
considering coherence and reliability of experts’ opinions. In fact the interval
of quantiles in which it is defined the maximum entropy probability distribu-
tion depends on the DM judgement on experts competence: the more they are
considered skilled the narrower the interval is. Outside that variable interval,
the DM is supposed to be pessimistic with respect to purely catastrophic losses
and optimistic with respect to very positive events. In so far, our rule is less
conservative and extreme, even if it explicitly considers events with very low
probability but very large consequences.
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