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SYMMETRIC CONSEQUENCE RELATIONS AND
STRATEGY-PROOF JUDGMENT AGGREGATION

STEFANO VANNUCCI

Abstract. It is shown that the posets of both substructural and
classical symmetric consequence relations ordered by set-inclusion
are (non-boolean) completely distributive complete lattices.
Therefore, those two basic versions of symmetric consequence re-

lations are amenable to anonymous neutral and idempotent strategy-
proof aggregation by majority polynomial rules on single-peaked
domains. In particular, the majority rule is characterized as the
only aggregation rule for odd profiles of symmetric consequence
relations that is anonymous, bi-idempotent and strategy-proof on
arbitrary rich locally unimodal domains.
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1. Introduction

In recent years issues concerning judgment aggregation have attracted
a wide interest among scholars from several disciplines including math-
ematics, logic, economics, theoretical computer science and artificial
intelligence (see e.g. Konieczny and Pino-Perez (2002), Gärdenfors
(2006), Dietrich (2007), Dietrich and List (2007), Everaere, Konieczny
and Marquis (2007), Daniels and Pacuit (2008), Dokow and Holzman
(2010), Grossi and Pigozzi (2014), Endriss (2016)).
Judgments are typically conceived of as proposition-like entities that

may be interconnected and entertain relationships of mutual consis-
tency or inconsistency. The current literature on judgment aggrega-
tion focusses on aggregation of sets of judgments, hence with theories
of sorts.
In that connection, theories amount to sets of mutually consistent

judgments that are closed with respect to certain consequence relations
as defined on appropriate subsets of judgments.
Thus, at least part of the literature on judgment aggregation con-

cerns in fact aggregation of theories, and consequence relations model
indeed admissible patterns of inference. Therefore, arguably, conse-
quence relations provide the underlying logical structure of such judg-
ment sets or theories. But consequence relations may vary across
agents, so when rephrased as theory aggregation, judgment aggrega-
tion involves aggregation of consequence relations. The present paper
addresses the aggregation problem for consequence relations of a quite
general variety, namely symmetric consequence relations (see e.g. Dunn
and Hardegree (2001), and Shoesmith and Smiley (1978)), focussing on
strategy-proofness properties of the available aggregation rules.
To this aim, the order-theoretic structure of two major classes of

symmetric consequence relations is studied: it is shown that both of
them are completely distributive complete lattices with respect to set-
inclusion.
It is then proved that, as a corollary of the foregoing result, and

for an odd number of agents, the majority rule is in fact the only
strategy-proof anonymous and bi-idempotent aggregation rule for sym-
metric consequence relations on any rich domain of single peaked pref-
erences.
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2. Notation, definitions and results

2.1. Preliminaries: Distributive Lattices and their Between-
ness Relations. Let X =(X,6) be a partially ordered set of alterna-
tive (i.e. 6 is a reflexive, transitive and antisymmetric binary relation
on X). We denote as x||y any pair x, y of 6-incomparable elements.
A partially ordered set X = (X,6) is a lattice if both the least-

upper-bound or join ∨ and the greatest-lower-bound or meet ∧ of any
x, y ∈ X -as induced by 6- are well-defined binary operations on X,
and a complete lattice if the l.u.b ∨Y and the g.l.b. ∧Y exist for all
Y ⊆ X. A lattice X = (X,6) is bounded if there exist ⊥,> ∈ X
such that ⊥ 6 x 6 > for all x ∈ X: by definition, any complete
lattice is bounded with ⊥ = ∨∅, and > = ∧∅. A lattice X = (X,6)
is distributive if for any x, y, z ∈ X, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(or, equivalently,x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)) i.e. the two equiv-
alent distributive identities hold. A lattice X = (X,6) satisfies the
join-infinite distributive law if for any x and S ⊆ X, x ∧ (

∨
S) =∨

{x ∧ s : s ∈ S}, and themeet-infinite distributive law if for any
x and S ⊆ X, x ∨ (

∧
S) =

∧
{x ∨ s : s ∈ S}. Notice that if a lattice

X = (X,6) is complete then both the join-infinite distributive law and
the meet-infinite distributive law imply distributivity of X . A frame
(co-frame) is a complete lattice X = (X,6) that satisfies the join-
infinite distributive law (the meet-infinite distributive law) (see John-
stone (1982) for a classic, thorough introduction to frames). A distrib-
utive lattice X = (X,6) is completely distributive if for arbitrary
families of elements ofX it satisfies the two complete distributivity laws
(CD-I)

∧
i∈I

∨
j∈J

xi,j =
∨
f∈JI

∧
i∈I
xi,f(i) and (CD-II)

∨
i∈I

∧
j∈J

xi,j =
∧
f∈JI

∨
i∈I
xi,j.

However, for complete lattices, it can be shown that CD-I and CD-II
are equivalent (see e.g. Balbes and Dwinger (1974), chpt. XII). Thus,
a completely distributive complete lattice is a complete lattice
X = (X,6) that satisfies CD-I (or, equivalently, CD-II).
An order filter of a partially ordered set X is a set F ⊆ X such

that z ∈ F if and only if z ∈ X and y 6 z for some y ∈ F : it
is said to be non-trivial if F 6= ∅ and proper if F 6= X. An order
filter F of a lattice X = (X,6) is a (latticial) filter if x ∧ y ∈ F for
any x, y ∈ F , and a prime filter if x ∨ y ∈ F implies that x ∈ F
or y ∈ F . The set of all non-trivial and proper prime filters of X
is denoted by FP . It should be recalled here the following important
and well-known fact to be used below: there is a bijection between
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the elements of a bounded distributive lattice X and the sets of prime
filters of X they belong to, namely the function φ : X → 2FP defined
by the rule φ(x) = {F ∈ FP : x ∈ F} is both injective and surjective
(see e.g. Davey, Priestley (1990), chpt. 10).1

A ternary betweenness relation
BX = {(x, z, y) ∈ X3 : x ∧ y 6 z 6 x ∨ y} is defined on X ,
which in turn induces an interval function IBX : X2 → 2X such that

and for any x, y ∈ X,
IBX (x, y) = BX (x, ., y) = {z ∈ X : x ∧ y 6 z 6 x ∨ y} is the interval

induced by x and y. Therefore, for any x, y, z ∈ X, z ∈ BX (x, ., y) if
and only if (x, z, y) ∈ BX (also written BX (x, z, y)). The pair (X, IBX )
is the interval space induced by BX .
Moreover, a ternary median operation µ : X3 → X is defined on
X =(X,6) by the following rule: for any x, y, z ∈ X,

µ(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z) = (x ∨ y) ∧ (y ∨ z)∧ (x ∨ z)
(the latter identity is of course a consequence of distributivity). It

is easily checked that for any x, y, z ∈ X, µ(x, y, z) = z if and only if
BX (x, z, y).
A few remarkable basic properties of BX are listed below, and easily

checked:

Claim 0. (see e.g. Nehring and Puppe (2007), Savaglio and Van-
nucci (2014)) The latticial betweenness relation BX of a distributive
lattice X =(X,6) satisfies the following conditions:
(i) Symmetry: for all x, y, z ∈ X, if BX (x, z, y) then BX (y, z, x);
(ii) Closure (orReflexivity): for all x, y ∈ X, BX (x, x, y) andBX (x, y, y);
(iii) Idempotence: for all x, y ∈ X, BX (x, y, x) only if y = x;
(iv) Convexity (orTransitivity): for all x, y, z, u, v ∈ X, ifBX (x, u, y),

BX (x, v, y) and BX (u, z, v) then BX (x, z, y);
(v) Antisymmetry: for all x, y, z ∈ X, if BX (x, y, z) and BX (y, x, z)

then x = y.;
(vi) Median-Equivalence: for all x, y, z ∈ X, BX (x, y, z) if and only

if µ(x, y, z) = y.

1That bijection is in fact the basis of Priestley’s representation theorem, es-
tablishing that any bounded distributive lattice X is isomorphic to the lat-
tice of all superset-closed clopen sets of the ordered topological space (FP , τ ,⊆)
where τ is the smallest topology on FP which includes the set-theoretic union
of {{F ∈ FP : x ∈ F} : x ∈ X} and {{F ∈ FP : x /∈ F} : x ∈ X} (see e.g. Davey,
Priestley (1990), Theorem 10.18).
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2.2. Symmetric consequence relations and their theories: struc-
ture. Let Z = ZL be a set of statements of an unspecified formal
language L, 2Z = {Y : Y ⊆ Z} its power set, and `: 2Z × 2Z → 2 a
Symmetric Consequence Relation (SCR) on 2Z as characterized
by the two following properties::
` (i) (Overlap): for all A,B ∈ 2Z if A ∩B 6= ∅ then ` (A,B) = 1;
` (ii) (Global Cut): for all A,B, Y ⊆ Z
if ` (A,B) = 0 then ` (A∪Y1, B ∪Y2) = 0 for some Y1, Y2 ⊆ Y such

that Y1 ∪ Y2 = Y and Y1 ∩ Y2 = ∅.
A SCR is classical if it also satisfies
` (iii) (Weakening): for all A,B,C,D ∈ 2Z
if ` (A,B) = 1 then ` (A ∪ C,B ∪D) = 1.
Conversely, a SCR that does not satisfy Weakening will also be re-

ferred to as substructural (see Dunn and Hardegree (2001) for a thor-
ough discussion of the merits of symmetric consequence relations, and
Restall (2000) for a comprehensive presentation of substructural logics
and of the motivations underlying rejection of the classical Weakening
condition2).
A judgment set or theory T (`) can be attached to any symmetric

consequence relation `by the following rule:
T (`) =

{
x ∈ Z : ` (∅, {x}) = 1 or there exists Y ⊆ Z

such that ` (Y, {x}) =` (∅, {y}) = 1 for each y ∈ Y

}
.

It follows that a profile of symmetric consequence relations also de-
fines a profile of judgment sets or theories.

Remark 1. One main reason for focussing on SCRs is related to
valuations and semantics. A valuation on Z is a function v : Z → 2,
and the SCR `V : 2Z → 2Z induced by a set V of valuations on Z
is defined as follows: for any A,B ∈ 2Z , `V (A,B) = 1 if and only if
for each v ∈ V : v(y) = 1 for some y ∈ B whenever v(z) = 1 for every
z ∈ A. Conversely, a valuation v : Z → 2 respects a SCR ` on Z if
for all A,B ∈ 2Z such that ` (A,B) = 1, v(y) = 1 for some y ∈ B
whenever v(z) = 1 for each z ∈ A, and V (`) denotes the class of all
valuations on Z that respect `. A class V of valuations on Z is sound
with respect to SCR ` on Z if `−1 (1) ⊆`−1V (1), and a SCR ` on Z is
complete with respect to a class V of valuations on Z if `−1V (1) ⊆`−1
(1). A class V of valuations on Z is said to be a semantics for SCR
` on Z if V characterizes `, namely if `−1 (1) =`−1V (1). It has been
shown that SCRs -as opposed to ACRs- have not only a semantics but

2The main example of substructural symmetric consequence relations as defined
in the present framework comes from relevant logics : A ` B does not allow to
conclude A ∪ C ` B because C may be irrelevant to B.
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a unique semantics (i.e. SCRs satisfy not just Completeness but
also Absoluteness as defined in Dunn and Hardegree (2001)).

Remark 2. A second main reason for focussing on SCRs is that
working on the full domain 2Z × 2Z makes it easier to compare the
behaviour of binary consequence relations and classical Tarskian con-
sequence operators. Indeed, a (classical) Tarskian consequence oper-
ator on Z is a closure operator on Z i.e. a function k : 2Z → 2Z

that satisfies, for any A,B ⊆ Z: k-(i) (Extension): A ⊆ k(A); k-(ii)
(Monotonicity): if A ⊆ B then k(A) ⊆ k(B); k-(iii) (Idempotency):
k(k(A)) ⊆ k(A). A SCR `kon Z is induced by a closure operator k
on Z by the following rule: for any A,B ∈ 2Z , `k (A,B) = 1 if and
only if B = k(A). Notice, however, that now the intended meaning
of `k (A,B) = 1 is that the members of A jointly imply each
member of B. It is easily checked that any such `kis characterized
by the following properties: for any A,B,C,D ∈ 2Z ,
C-Singularity (CSI): for each A ∈ 2Z there exists B ∈ 2Z such that
`k (A,B) = 1 and `k (A,C) = 0 for any C 6= B;
C-Extension (CEX): if `k (A,B) = 1 then A ⊆ B;
C-Monotonicity (CMON) : if A ⊆ B, `k (A,C) = 1 and `k

(B,D) = 1 then C ⊆ D;
C-Idempotency (CID): if `k (A,B) = 1 then `k (B,B) = 1.
Moreover, it is easily checked that `k satisfies Global Cut but fails

to satisfy both Overlap and Weakening. To check that Global Cut
holds, observe that for any Y,A,B ⊆ Z, if `k (A,B) = 0 then either
B ⊂ k(A) or k(A) ⊂ B. If B ⊂ k(A) then take Y1 = Y and Y2 = ∅:
thus, B ∪ ∅ = B ⊂ k(A) ⊆ k(A ∪ Y ) hence `k (A ∪ Y1, B ∪ Y2) = 0.
If on the contrary k(A) ⊂ B, then take Y1 = ∅, Y2 = Y : then
k(A ∪ Y1) = k(A) ⊂ B ⊆ B ∪ Y whence `k (A ∪ Y1, B ∪ Y2) = 0, and
Global Cut is satisfied. To see that Overlap obviously fails consider
e.g. A = {p, qp, q} and B = {q}: A∩B 6= ∅, but `k (A,B) = 0. To see
that in general Weakening also fails, define constant closure operator
k1 : 2Z → 2Z by the rule k1(A) = Z for any A ∈ 2Z , and take any
closure operator k 6= k1 (e.g. the identity closure operator kid): then,
by construction and CSI, `kviolates Weakening.
A closure-induced consequence relation (CICR) on Z is a

function `: 2Z × 2Z → 2 that satisfies Global Cut, CSI, CEX, CMON,
CID. Notice that any CICR ` on Z induces a closure operator k` :
2Z → 2Z by the following rule: for any A ∈ 2Z , k`(A) = B where B
is the only subset of Z such ` (A,B) = 1. Moreover, if ` and `′are
distinct CICRs on Z then k` 6= k`′ .
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We denote by CsZ the set of all SCRs on Z, by CcsZ the set of all classical
SCRs on Z, by CcscZ the set of all closure-induced CICRs on Z, and by
CZ the set of all functions ϕ : 2Z × 2Z → 2, and assume |Z| ≥ 2
in order to avoid the need for trivial qualifications. CZ is partially
ordered in the obvious way by partial order 6 defined as follows: for
any `1,`2∈ CZ ,
`16 `2 if and only if `−11 (1) ⊆ `−12 (1) i.e. for each A,B ⊆ Z, if

`1 (A,B) = 1 then `2 (A,B) = 1.
For any D ⊆ CZ ,

∨
D =`∨D∈ CZ such that, for any A,B ⊆ Z, `∨D

(A,B) = 1 iff there exists `i∈ CZ with `i (A,B) = 1, and
∧

D =`∧D∈
CZ such that, for any A,B ⊆ Z, `∧D (A,B) = 1 iff `i (A,B) = 1 for
each `i∈ CZ . Thus,

∨
D is the least upper bound of D with respect

to 6,
∧

D is the greatest lower bound of D with respect to 6 . In

particular, for any `1,`2∈ CZ ,
∨
{`1,`2} is also written `1 ∨ `2,and∧

{`1,`2} is also written `1 ∧ `2.
Clearly, (CZ ,6) is a completely distributive complete boolean (i.e.

complemented) lattice, hence in particular a boolean frame and co-
frame.
Indulging in a slight abuse of language, we shall also use 6 to also

denote 6|CsZ ,6|CcsZ , 6|CcicrZ
, namely the restriction of 6 to CsZ , CcsZ , CcicrZ

respectively, since no ambiguity is likely to arise from this usage.
To begin with, we should be immediately that CICRs are an an-

tichain with respect to 6, namely

Claim 1. Poset (CcicrZ ,6) is the discrete order on CcicrZ , namely 6
-when restricted to CcicrZ - reduces to identity.

Proof. Observe that for any `∈ CcicrZ , `−11 (1) is precisely the graph of
closure operator k`, and | `−11 (1)| = 2|Z|, by construction. It follows
that for any `,`′∈ CcicrZ if `6=`′then `−11 (1) 6= `′−11 (1) since k` 6= k`′ .
But then, | `−11 (1)| = | `′−11 (1)| entails that `
`′and `′
`. �

The corresponding order-theoretic structure induced by 6 on CsZ and
CcsZ is, however, much richer and more regular. Indeed, we have the
following
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Theorem 1. The posets (CsZ ,6) and (CcsZ ,6) are completely distribu-
tive complete lattices.

Proof. To begin with, consider `1, `0∈ CZ
defined as follows:
`1 (A,B) = 1 for any A,B ⊆ Z, while
`0 (A,B) = 1 if and only if A ∩B 6= ∅.
It is immediately checked that both `1and `0satisfy Overlap, Global

Cut and Weakening, by definition, hence
`06`6`1for any `∈ CsZ . Therefore, both (CsZ ,6) and (CcsZ ,6) are

bounded posets sharing their top and bottom elements.
Moreover, let D = {`i: i ∈ I} ⊆ CsZ :

∨
D =`∨D∈ CZ is defined by

the following rule: for any A,B ⊆ Z, `∨D (A,B) = 1 iff there exists
`i∈ CZ with `i (A,B) = 1.
Similarly,

∧
D =`∧D∈ CZ is defined as follows: for any A,B ⊆ Z,

`∧D (A,B) = 1 iff `i (A,B) = 1 for each `i∈ CZ .
By construction, both `∨Dand `∧Dsatisfy Overlap. Moreover, sup-

pose that D 6= ∅ and `∧D (A,B) = 0 for some A,B ⊆ Z.
Then, there exists `i∈ D such that `i (A,B) = 0.
Hence, for each Y ⊆ Z there exist Y1, Y2 ⊆ Y such that Y1 ∩ Y2 =

∅, Y1 ∪ Y2 = Y , and `i (A ∪ Y1, B ∪ Y2) = 0, since `i∈ CsZ . But then,
`∧D (A ∪ Y1, B ∪ Y2) = 0 i.e.
`∧Dalso satisfies Global Cut. Since `1is a maximum of CsZ with

respect to 6, it follows that (CsZ 6) is a complete lattice.
Also, if D = {`i: i ∈ I} ⊆ CscZ , then `∧Dsatisfies Weakening, by

construction. Therefore, (CscZ 6) is also a complete lattice.
Now, let I, J be two index sets, and {`i,j}i∈I,,j∈J ⊆ CsZ (CcsZ respec-

tively).
Then, both

∧
i∈I

∨
j∈J
`i,jand

∨
f∈JI

∧
i∈I
`i,f(i) exist and belong to CsZ (CcsZ ,

respectively), by completeness.
Therefore, by definition,∨
f∈JI

∧
i∈I
`i,f(i)6

∧
i∈I

∨
j∈J
`i,j.

Moreover,
∧
i∈I

∨
j∈J
`i,j6

∨
f∈JI

∧
i∈I
`i,f(i): indeed, for any A,B ⊆ Z,

suppose
∧
i∈I

∨
j∈J
`i,j (A,B) = 1. Then, for each i ∈ I

there exists j = ϕ(i) ∈ J such that `i,j (A,B) = 1, i.e. there exists
ϕ ∈ J I such that

∧
i∈I
`i,ϕ(i) (A,B) = 1, whence
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f∈JI

∧
i∈I
`i,f(i) (A,B) = 1. �

Remark 3. It should be noticed that neither (CsZ ,6) nor (CcsZ ,6)
nor are boolean i.e. (ortho-)complemented.
To see that (CsZ ,6) is not (ortho-)complemented consider C,D ⊆ Z

such that C ∩ D = ∅ and `(C,D), `↑(C,D)∈ CZ defined as follows: for
any A,B ⊆ Z,

`(C,D) (A,B) = 1 iff either A ∩B 6= ∅ or (A,B) = (C,D).
Clearly, `(C,D)satisfies Overlap by definition. To check that `(C,D)also

satisfies Global Cut, take A,B ⊆ Z such that `(C,D) (A,B) = 0: then,
A ∩ B = ∅ and (A,B) 6= (C,D) hence either A 6= C or B 6= D,
or both. If A 6= C, posit Y1 = Y ∩ A and Y2 = Y r A: then,
A∪Y1 = A 6= C, and (A∪Y1)∩(B∪Y2) = A∩(B∪(Y rA)) = ∅. Hence,
`(C,D) ((A ∪ Y1) ∩ (B ∪ Y2)) = 0, as required. Thus, `(C,D)∈ CsaZ ⊆ CsaZ .
Suppose that (CsaZ ,6) is (ortho-)complemented, i.e. there exists a

(unique) antitonic function ∗ : CsaZ → CsaZ such that for any `∈ CsaZ :
(i) (`∗)∗ =`; (ii) `∗ ∧ `=`0; (iii) `∗ ∨ `=`1. Hence, in particular,
for any A,B ⊆ X such that A ∩ B = ∅ and |B| = 1, `∗ (A,B) = 1
iff ` (A,B) = 0 (by (ii) and (iii)). Next, take `(A,B)for some disjoint
A,B ⊆ Z such that A ∪ B 6= Z. By definition, (`(A,B))∗(A,B) = 0.
Then, consider Y := Zr(A∪B) and any Y1, Y2 ⊆ Y such that Y1∩Y2 =
∅, Y1 ∪ Y2 = Y and (A ∪ Y1) ∩ (B ∪ Y2) = ∅. By construction, either
A∪Y1 6= A, or B ∪Y2 6= B (or both), hence `(A,B) (A∪Y1, B ∪Y2) = 0
and therefore (`(A,B))∗(A ∪ Y1, B ∪ Y2) = 1. It follows that (`(A,B))∗ /∈
CsZ since it fails to satisfy Global Cut.
Now, for any `∈ CZ define `

c∈ CZ as follows: for each A,B ⊆ Z,
`c (A,B) = 1 iffA∩B 6= ∅ or ` (A,B) = 0. Notice that, by definition,
` ∨ `c=`1and ` ∧ `c=`0for each `∈ CZ : thus, the restriction of
c : CZ → CZ to CcsZ is the only possible (ortho-)complementation for
(CcsZ ,6). Clearly, `c also satisfies Overlap by definition, for any `∈ CZ .
However, for any C,D ⊆ Z, consider `↑(C,D)∈ CZ defined as follows :
for each A,B ⊆ Z,

`↑(C,D) (A,B) = 1 iff either A∩B 6= ∅ or [ C ⊆ A and D ⊆ B ].
It is immediately checked that `↑(C,D)satisfies Overlap and Weaken-

ing, by definition. To check Global Cut, consider A,B ⊆ Z such that
`↑(C,D) (A,B) = 0. Thus, A ∩ B = ∅ and (A,B) /∈↑ (C,D) i.e. either
C * A or D * B. If C * A then, for any Y ⊆ X, posit Y1 := Y ∩ A,
and Y2 := Y rA. Thus, (A∪ Y1)∩ (B ∪ Y2) = A∩ (B ∪ (Y rA)) = ∅
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and C * A = A ∪ Y1 hence (A ∪ Y1) ∩ (B ∪ Y2) /∈↑ (C,D). Therefore,
`↑(C,D) ((A∪Y1), (B∪Y2)) = 0 as required. It follows that `↑(C,D)∈ CcsZ .
Finally, consider (`↑(C,D))c for some C,D ⊆ Z such that C ∩D = ∅

and ∅ 6= C∪D 6= Z, and A,B ⊆ Z such that A∩B = ∅, ∅ 6= A∪B 6=
Z, and (A ∪ C) ∩ (B ∪D) = ∅. Then, by definition,
`↑(C,D) (A,B) = 0 and `↑(C,D) (A ∪ C,B ∪ D) = 1, while (`↑(C,D)

)c(A,B) = 1 and (`↑(C,D))c(A ∪ C,B ∪ D) = 0. Thus, (`↑(C,D))c fails
to satisfy Weakening whence (`↑(C,D))c /∈ CcsZ . It follows that (CcsZ ,6)
is not (ortho-)complemented.

Remark 4. SCRs are to be contrasted with Asymmetric Con-
sequence Relations (ACRs), that are much more widely used, but
are only defined on those ordered pairs (A, {y}) ∈ 2Z × 2Z whose sec-
ond element is a unit set. Substructural ACRs satisfy suitably adapted
counterparts of Overlap and Global Cut. Classical ACRs also satisfy
a suitably adapted counterpart of Weakening. Thus, ACRs may be re-
garded as restrictions of SCRs to subdomain 2Z × {{z} : z ∈ Z},
that require a convenient reformulation of the basic axioms. It can
be shown that a counterpart of the previous Theorem holds for the
corresponding posets of substructural and classical ACRs. The details
however will be spelled out elsewhere.

3. Symmetric consequence and strategy-proof judgment
aggregation

LetN = {1, ..., n} denote a finite population of agents, andX =(X,6
) the relevant distributive lattice (frame) of alternative SCRs (i.e. 6 is
a reflexive, transitive and antisymmetric binary relation on X∗). We
denote as x||y any pair x, y of 6-incomparable outcomes, and assume
|N | ≥ 3 in order to avoid tedious qualifications, where |·| denotes the
cardinality of a set. Each agent inN proposes a symmetric consequence
relation in X, and has a (possibly revealed) preference relation on X
Now, consider the set TX of all topped preorders on X (i.e. reflexive

and transitive binary relations having a unique maximum in X). For
any <∈ TX , top(<) denotes the unique maximum of < (while � and ∼
denote the asymmetric and symmetric components of <, respectively,
and - for any x ∈ X - UC(�, x) := {y ∈ X : y < x} denotes the upper
contour of < at x). Single peaked (total) preorders are those topped
(total) preorders that ‘respect’-i.e. are ‘consistent with’- the between-
ness relation BX . We shall focus on a very general notion of single
peaked , labeled here as local unimodality and made precise by the
following definition



SYMMETRIC CONSEQUENCE AGGREGATION 11

Definition 1. A topped preorder <∈ TX -with top outcome x∗-is lo-
cally unimodal with respect to BX (or locally BX -unimodal) if and
only if, for all y, z ∈ X, z ∈ BX (x∗, ., y) implies that z < y; moreover,
for any Y ⊆ X, < is Y -complete if for each y, y′ ∈ Y either y < y′

or y′ < y (or both), and total if it is X-complete.

Let UX ⊆ TX denote the set of all locally unimodal total preorders
(with respect to BX ), and UN

X the corresponding set of all N -profiles of
locally unimodal total preorders or full locally unimodal domain. We
shall mostly focus on locally unimodal domains of preorders that need
not be total but satisfy a suitable richness condition, as made precise
by the following definition:

Definition 2. A set DX of locally unimodal preorders (with respect to
BX ) is rich if for all x, y ∈ X there exists <∈ DX such that top(<) = x
and UC(�, y) = BX (x, ., y).

It should be noticed here that for each x, y ∈ X one such rich locally
unimodal preorder <∗x,y∈ UX with three indifference classes is easily
defined as follows: take {x} , B(x, ., y) r {x} , and any subset of X r
BX (x, ., y) to be the top, middle, and bottom indifference classes of <∗,
respectively.
An aggregation rule for (N,X) is a function f : XN → X. For

any xN ∈ XN , y ∈ X and prime filter F ∈ FP , denote Ny(xN) =
{i ∈ N : y 6 xi} and, similarly, NF (xN) = {i ∈ N : xi ∈ F}. The fol-
lowing properties of an aggregation rule will play a crucial role in the
ensuing analysis.

Definition 3. An aggregation rule f : XN → X is BX -monotonic if
and only if for all xN = (xj)j∈N ∈ XN , i ∈ N and x′i ∈ X, f(xN) ∈
BX (xi, ., f(x

′
i, xNr{i}).

Definition 4. An aggregation rule f : XN → X is monotonically
independent (MI) if and only if for all xN , yN ∈ XN and all x ∈ X:
if Nx(xN) ⊆ Nx(yN) then x 6 f(xN) implies x 6 f(yN).

Remark 5. Thanks to Priestley’s representation theorem for bounded
distributive lattices (see Davey and Priestley (1990)) if X =(X,6) is
a distributive lattice then the MI property can also be reformulated
in terms of prime filters as follows: f : XN → X is monotonically
independent (MI) if and only if for all xN , yN ∈ XN and all F ∈ FP :
if NF (xN) ⊆ NF (yN) then f(xN) ∈ F implies f(yN) ∈ F .

A generalized committee in N is a set of coalitions W ⊆ P(N)
such that T ∈ W if and only if T ⊆ N and S ⊆ T for some S ∈ C (a
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committee in N being a non-empty generalized committee in N which
does not include the empty coalition)3.
A generalized committee aggregation rule is a function f :

XN → X such that, for some fixed generalized committee W ⊆ P(N)
and for all xN ∈ XN , f(xN) = fW(xN) := ∨S∈W(∧i∈Sxi).4
A prominent example of a generalized committee voting rule is of

course the majority rule fmaj defined as follows: for all xN ∈ XN ,
fmaj(xN) = ∨S∈Wmaj(∧i∈Sxi) whereWmaj =

{
S ⊆ N : |S| ≥ b |N |+2

2
c
}
.

Claim 2. Let X = (X,6) be a distributive lattice, and W ⊆ P(N) a
generalized committee in N . Then, the generalized committee aggrega-
tion rule fW : XN → X is monotonically independent.

Proof. Let xN , yN ∈ XN and F ∈ FP such that NF (xN) ⊆ NF (yN) and
fW(xN) = ∨S∈W(∧i∈Sxi) ∈ F. By primality of F and finiteness of N ,
there exists S ∈ W such that xi ∈ F for each i ∈ S. Hence, NF (xN) ⊆
NF (yN) implies that S ⊆ {i ∈ N : yi ∈ F} := S ′ ∈ W, by construction.
But then, (∧i∈S′yi) ∈ F , whence fW(yN) = ∨S∈W(∧i∈Syi) ∈ F as
required. �

Remark 6. Notice that the previous Claim fails if X = (X,6) is
not a distributive lattice. To see this, consider the behaviour of the
majority rule on M3 or the diamond for N = {1, 2, 3}. The diamond,
a 5-element lattice -consisting of the top element 1, the bottom element
0, and three mutually incomparable join-irreducible elements s1, s2, s3-
is the smallest nondistributive modular lattice (recall that a lattice
X = (X,6) is modular iff for each x, y, z ∈ X, if z 6 x then x ∧ (y ∨
z) = (x ∧ y) ∨ z). Then, take profiles xN = (1, s2, s3) and yN =
(s1, 0, 0).Observe that
{i ∈ N : s1 ≤ xi} = {i ∈ N : s1 ≤ xi} = {1}. Hence, by definition,

for any monotonically independent f : X3 → X, s1 6 f(xN) if and
only if s1 6 f(yN). However,
fmaj(xN) = (1 ∧ s2) ∨ (1 ∧ s3) ∨ (s2 ∧ s3) = 1 hence s1 ≤ fmaj(xN),

whereas
fmaj(yN) = (s1 ∧ 0) ∨ (s1 ∧ 0) ∨ (0 ∧ 0) = 0 hence s1 
 fmaj(xN).
Therefore, the majority rule fmaj is in general not monotonically

independent on a non-distributive lattice (only projections i.e. collegial

3Thus, a generalized committee is just an order filter of the partially ordered set
(P(N),⊆) of coalitions of N , while a committee is a non-trivial and proper order
filter of (P(N),⊆) namely an order filter other than ∅ or P(N).
4On generalized committee rules on lattices and their properties see e.g. Mon-

jardet (1990), Nehring and Puppe (2007), and Savaglio and Vannucci (2014).
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aggregation rules- induced by a family of winning coalitions with a
unique minimal coalition- are monotonically independent among non-
constant rules: see Monjardet (1990), Theorem 3.4).

Remark 7. Amedian on set X is a ternary operation f : X3 → X
such that for any x, y, z, u, v ∈ X the following properties hold:
(med-i): f(x, x, y) = x; (med-ii): f(x, y, z) = f(y, x, z) = f(y, z, x);

(med-iii) f(f(x, y, z), u, v) = f(x, f(y, u, v), f(z, u, v)).
A median algebra is a pair (X, f) where X is a set and f is a

median on X (see e.g. Bandelt and Hedlíková(1983)).
A (ternary) majority on set X is a ternary operation f : X3 → X

such that for any x, y ∈ X the following property holds:
(maj): f(x, x, y) = f(x, y, x) = f(y, x, x) = x.
Clearly, a median is also a majority, but not conversely.
A majority algebra is a pair (X, f) where X is a set and f is a

(ternary) majority on X.
Now, let X = (X,6) be a lattice, and µ : X3 → X the ternary

operation defined as follows: for any x, y, z ∈ X
µ(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).
It is immediately seen that µ is a majority on X as defined above.

If X = (X,6) is a distributive lattice it can be checked that µ is
also a median. If on the contrary X = (X,6) is not distributive,
however, µ is not a median on X. To check the latter statement, let
us assume again that X = (X,6) is the diamond M3 as defined in
the previous Remark. Computation of the terms of identity (med-iii)
with reference to the sequence s1, s2, 1, s3, 0 yields:
µ(µ(s1, s2, 1), s3, 0) = µ(1, s3, 0) = s3, while µ(s1, µ(s2, s3, 0), µ(1, s3, 0)) =

µ(s1, 0, 0) = 0 6= s3
hence (med-iii) fails, as claimed.

Since aggregation rules only mention outcomes (as opposed to prefer-
ences on outcomes) their strategy-proofness properties require of course
an explicit specification of the relevant preference domains. The en-
suing analysis is mainly focussed on rich domains of locally unimodal
preorders as made precise by the following definition:

Definition 5. Let f : XN → X be an aggregation rule and DX ⊆ UX
be a rich domain of locally unimodal and f [XN ]-complete5 preorders
(with respect to BX ). Then, f is (individually) strategy-proof on DN

X
if and only if, for all xN ∈ XN , i ∈ N and x′ ∈ X, and for all
<N = (<j)j∈N ∈ DN

X , not f(x
′, xNr{i}) �i f(top(<i), xNr{i}).

5Here f [XN ] denotes of course the range of f .
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Lemma 1. Let X = (X,6) be a bounded distributive lattice, f : XN →
X an aggregation rule for (N,X), and DX a rich domain of locally
BX -unimodal f [XN ]-complete preorders (with respect to BX ). Then,
the following statements are equivalent:
(i) f is strategy-proof on DN

X ;
(ii) f is BX -monotonic;
(iii) f is monotonically independent.

Proof. See Vannucci (2016a), Lemma 1. �

As a corollary of Theorem 1 and the foregoing Lemma, we have the
following characterization result for the majority rule as an aggrega-
tion rule for symmetric consequence relations both substructural and
classical.

Proposition 1. Let Bs and Bcs the betweenness relations induced by
the ternary median operations µ of (CsX ,6) and µ′ of (CcsX , Iµ′), respec-
tively. Then, whenever N is odd-sized the corresponding majority rules
fµ : CsNX → CsX and fµ

′
: CsNX → CsX are the only anonymous and bi-

idempotent aggregation rules that are strategy-proof on any rich locally
Bs-unimodal domain D of total preorders on CsX , and on any rich
locally Bcs-unimodal domain D of total preorders on CcsX , respectively.

Proof. Clearly, fmaj is anonymous by definition, and strategy-proof on
DN by Lemma 8, and the observation that fµ and fµ

′
are monotonically

independent as implied by Claim 6. Moreover, if |N | is odd then fmaj
is bi-idempotent, by definition.
Conversely, suppose that f : XN → X is anonymous, bi-idempotent

and strategy-proof onDN . Since f is strategy-proof onDN , it follows by
Lemma 1 that f is monotonically independent. But it can also be easily
shown that (a) if f is (monotonically) independent and bi-idempotent
then it is also neutral, and (b) if f is monotonically independent and
neutral then f is a generalized committee aggregation rule i.e. there
exists an order filter W of (P(N),⊆) such that for all xN ∈ XN

f(xN) = ∨A∈W ∧i∈A xi.6
Finally, anonymity of f entails that there exists a positive integer

k ≤ |N | such that W = {A ⊆ N : |A| ≥ k}, and bi-idempotence of f
implies that |N | − k = k− 1 , whence n = |N | = 2k− 1 = 2(k− 1) + 1
and k = n+1

2
. Therefore, W =

{
A ⊆ N : |A| ≥ n+1

2

}
= Wmaj, namely

f = fmaj. �
6Broadly speaking, the proof of points (a) and (b) sketched above is an adap-

tation and extension of a similar proof provided by Monjardet (1990) for finite
distributive lattices (details are available from the author upon request).
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4. Concluding remarks

The main results of the present paper establish that
(i) symmetric consequence relations are completely distributive com-

plete lattices and therefore
(ii) symmetric consequence relations -and the theories (or judgment

sets) attached to them- are amenable to anonymous, (bi-)idempotent
and strategy-proof aggregation through the majority rule on a very
general class of single peaked domains.
Since symmetric consequence relations (SCRs) may be construed as

a representation of ‘reasons’ for the acceptance of the corresponding
judgment sets, (ii) may be regarded as a positive result, especially
from the perspective of deliberative democracy, that has exercised so
many scholars in the last two or three decades. Of course, one might
also be interested in coalitional strategy-proofness properties of the
majority rule on the same single peaked preference domains for SCRs.
Unfortunately, however, the majority rule fails to satisfy coalitional
strategy-proofness on the lattices of SCRsconsidered above, due to the
incidence-geometric structure of the interval spaces induced by their
betweenness relations (see Vannucci (2016)). Finally, as noticed above,
there are plenty of SCRs that are arguably implausible or weird: it
remains to be seen whether some ‘reasonable’(distributive) sublattices
of SCRs do exist and can be conveniently characterized.
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